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ABSTRACT 

Contract No. NAS8-20076 encompasses a n  a n a l y t i c a l  and experimental 

i nves t iga t ion  of t h e  thermal conduct iv i ty  and d i e l e c t r i c  constant  of 

non-metallic ma te r i a l s .  P r inc ipa l  emphasis w a s  placed on evaluat ing  

the  mechanisms o f  heat  t r a n s f e r  i n  evacuated s i l i c a t e  powders and i n  

e s t ab l i sh ing  the  complex d i e l e c t r i c  constant  of these  materials 

Experimental measurements of t he  complex d i e l e c t r i c  constant of g l a s s  

beads, pumice, and b a s a l t  powders, and s o l i d  g l a s s ,  pumice, and b a s a l t  

were made a t  wavelengths of 3 2 cm and 1 2 cm over t h e  temperature range 

from 77'K t o  400°K 

quar tz  powders were measured using the  l i n e  heat  source  method a t  gas  

pressures  of t o  lo-' t o r r  and a t  temperatures ranging from 150% 

t o  400'K 

The thermal conduct iv i ty  of t he se  materials and 

The d i e l e c t r i c  constants  of t h e  s i l ica te  powders measured vary from 

1.9 t o  2 9 The l o s s  tangents of t hese  materials vary from about 0.004 

t o  0.030 The d i e l e c t r i c  constants  of t he  s o l i d  s i l i c a t e s  from which 

the  powders were prepared range from 5.4 t o  8 6 

The e f f e c t i v e  thermal conduc t iv i t i e s  of t h e  evacuated powders of 

w/cm°C t o  near 40 x p a r t i c l e  s i z e  5-75~1 vary from about 4 x 

w/cm"C over the  temperature range from 150'K t o  400"K, and can be repre-  

sented  by t h e  sum of a constant  term and a term which has a cubic t e m-  

pe ra tu re  dependence. The r a t i o  of t h e  r a d i a t i o n  t o  s o l i d  conduction con- 

t r i b u t i o n s  t o  e f f e c t i v e  thermal conduct iv i ty  v a r i e s  from less than 0 1 

t o  over 5 depending upon the  powder s i z e ,  composition, and temperature 

Experimental measurements and r e s u l t s  are discussed i n  r e l a t i o n  t o  

pos tu la ted  luna r  su r f ace  materials. 
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I SUMMARY 

A PURPOSE AND SCOPE 

Contract  No. NAS8-20076 encompasses an  a n a l y t i c a l  and experimental 

i nves t iga t ion  of t h e  thermal conduct iv i ty  and d i e l e c t r i c  constant  of 

non-metallic materials. 

ing the  mechanisms of heat  t r a n s f e r  i n  evacuated s i l ica te  powders and i n  

e s t ab l i sh ing  t h e  complex d i e l e c t r i c  constant  of t hese  materials The 

experimental measurements and r e s u l t s  are discussed i n  r e l a t i o n  t o  postu- 

l a t e d  luna r  su r f ace  materials 

P r i n c i p a l  emphasis has been placed on evaluat-  

A b r i e f  review of radio  astronomical and in f r a red  observations of 

t h e  lunar  su r f ace  is given t o  e s t ab l i sh  t h e  requirements f o r  d i e l e c t r i c  

constant  and thermal conduct iv i ty  measurements, Theore t ica l  and empir ica l  

r e l a t i onsh ips  among d i e l e c t r i c  constant ,  wavelength, dens i ty ,  and loss 

tangent are described; and t h e i r  s ign i f i cance  t o  t he  i n t e r p r e t a t i o n  of 

observat ional  da t a  is reviewed. The mechanisms of heat  t r a n s f e r  i n  

p a r t i c u l a t e  and porous silicates are described; t h e o r e t i c a l  and empir ica l  

models f o r  es t imat ion of e f f e c t i v e  conductivity are proposed; and t h e  

s ign i f i cance  of ava i l ab l e  labora tory  thermal conduct iv i ty  d a t a  t o  t he  

i n t e r p r e t a t i o n  of lunar  su r f ace  materials data  is  summarized 

Experimental measurements of t he  complex d i e l e c t r i c  constant of g l a s s  

beads, pumice, and b a s a l t  powders, and s o l i d  g l a s s ,  pumice, and b a s a l t  

were made a t  wavelengths of 3,2 cm and 1 2 cm over t h e  temperature range 

from 77'K t o  4OOOK; t h e  terminated waveguide and t h e  s l o t t e d  waveguide 

methods were used f o r  t he  measurements 

The thermal conduct iv i ty  of g l a s s  beads, pumice, b a s a l t  and quar tz  

powders, and s o l i d  g l a s s  were measured using the  l i n e  heat  source method, 

Measurements were made a t  pressures  of 10 t o  lo-' t o r r  a t  temperatures 

ranging from 1 5 0 ° K  t o  400'K. The experimental  d a t a  were examined using 

empir ica l  models of r ad i a t ion  and conduction i n  t h e  p a r t i c u l a t e  systems. 

-a 
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B RESULTS AND CONCLUSIONS 

1 D i e l e c t r i c  Constant 

The d i e l e c t r i c  constants  of t h e  s i l i c a t e  powders measured vary from 

The loss tangents of these  ma te r i a l s  vary from about 0.004 1.9 t o  2 9 

t o  0.030. The d i e l e c t r i c  constants  of t h e  s o l i d  s i l i c a t e s  from which 

the  powders were prepared range from 5.4 t o  8,6. 
d i f f e r e n c e  i n  the  d i e l e c t r i c  constant  of t h e  powders a t  the  two wave- 

lengths  inves t iga ted .  The loss tangents of t h e  powders a r e  l a r g e r  a t  

t h e  s h o r t e r  wavelength, 

t h e  d i e l e c t r i c  constant  of the  powders is  neg l ig ib le  over the  range from 

-77'K t o  400'K. 

loss tangent tend t o  increase  a t  t h e  upper temperature l i m i t  of t h i s  

range, p a r t i c u l a r l y  f o r  b a s a l t  powders The dependence of t h e  d i e l e c t r i c  

constant of the  powders on dens i ty  is adequately represented by theore- 

t i c a l  formulas which r e l a t e  t h e  d i e l e c t r i c  constant  t o  the  f r a c t i o n  of 

the  s o l i d  and t h e  d i e l e c t r i c  constant  of the  s o l i d ,  There is no well- 

defined co r re l a t ion  between thermal conduct ivi ty  and d i e l e c t r i c  constant  

of the  s i l i c a t e  powders. The c o r r e l a t i o n  proposed by T r o i t s k i i d o e s  not 

hold f o r  the  powders and s o l i d s  w e  studied. 

of the  luna r  su r face  a r e  s i m i l a r  t o  those of t h e  minerals and powders 

s tudied i n  t h i s  work, the  pene t ra t ion  depth of microwaves is much g rea te r  

than t h e  thermal pene t ra t ion  depth (approximately 40 times g r e a t e r  f o r  

3 28 cm waves and 10 times g r e a t e r  f o r  1.18 cm waves) 

of m e t a l l i c  ( i ron)  p a r t i c l e s  present  i n  t h e  d i e l e c t r i c  s i l i c a t e s  tend t o  

decrease the  pene t ra t ion  depth s i g n i f i c a n t l y  

There is  no s i g n i f i c a n t  

The e f f e c t  of temperature on t h e  r e a l  p a r t  of 

The imaginary p a r t  of t h e  d i e l e c t r i c  constant and t h e  

I f  t h e  d i e l e c t r i c  p roper t i e s  

Small amounts 

2 Thermal Conductivity 

The e f f e c t i v e  thermal conduc t iv i t i e s  of the  evacuated powders of 
-6 p a r t i c l e  s i z e  5-75p vary from about 4 x 10 

w/cm°C over the  temperature range from 150'K t o  400'K, and can be repre-  

sented by t h e  sum of a constant  term and a term which has  a cubic tem- 

pera tu re  dependence, I n  t h e  temperature range of 150% t o  400°K, the  

r a t i o  of t h e  r a d i a t i o n  t o  s o l i d  conduction con t r ibu t ions  t o  e f f e c t i v e  

wjcm"C t o  near 40 x 

'I 
I 

I 
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thermal conductivity varies from less than 0 , l  to over 5 depending upon 
the particular powder size and composition 

The solid conduction contribution to effective thermal conductivity 

decreases with increasing particle size, and the radiation contribution 
increases with increasing particle size 
to effective thermal conductivity can be predicted adequately on the basis 
of available correlations which take into account the refractive index 
and its variation with wavelength. 
thermal conductivity cannot be predicted adequately using correlations 
which consider only Hertzian contact areas and the thermal conductivity 
of the solid There is no direct correlation between thermal conduc- 
tivity of particulate, vesicular, and solid silicates and density The 
structure of the material influences thermal conductivity more than 
density 

The radiation contribution 

The solid conduction contribution to 

C RECOMMENDATIONS 

In analyzing lunar infrared temperature data, the thermal parameter 
should not be treated as independent of temperature A more desirable 
procedure is to include the variation of both specific heat and density 
with temperature, 

Additional measurements of dielectric constant at other wavelengths, 
and of thermal conductivity of other postulated lunar materials at low 
temperatures should be carried out 

In order to develop a better understanding of contact between particles, 
additional experiments are required under conditions where conduction heat 
transfer can be measured independently of other mechanisms 

3 





11, INTRODUCTION 

The flow of hea t  i n  heterogeneous materials can be described by 

thermal conduction and r a d i a t i o n  processes a c t i ng  simultaneously i n  

series and p a r a l l e l  combinations i n  each phase. 

cons is t ing  of a gas phase and a non-metall ic  s o l i d  phase confined by 

boundaries w i th  spec i f i ed  temperatures and proper t ies  ( t y p i c a l l y  a 

powder o r  f i b r o u s  material w i th in  a conta iner ) ,  h ea t  may flow from one 

boundary t o  another by gaseous conduction, s o l i d  conduction ( i , e , ,  through 

t h e  s o l i d  phase across  areas of contact  between p a r t i c l e s  o r  f i b e r s ) ,  and 

r ad i a t i on  from su r f ace  t o  su r f ace  through t h e  gas phase and w i th in  t h e  

s o l i d  phase 

I n  a d ispersed  system 

I n  many p r a c t i c a l  app l i c a t i ons  t h e  t o t a l  heat  f l u x  through a hetero-  

geneous material is  t h e  important quant i ty  t o  be spec i f i ed  o r  measured 

I n  some simple systems, t h e  hea t  f l u x  is  uniquely determined by t h e  aver- 

age temperature gradient  i n  t h e  material and t h e  bulk thermal p rope r t i e s  

of t h e  material I n  t h e  genera l  case, however, t h e  hea t  f l u x  depends 

upon t h e  r ad i a t i on  c h a r a c t e r i s t i c s  of t h e  boundary sur faces  ( t h e i r  e m i t -  

tance  and re f lec tance)  and t h e  th ickness  of  t h e  ma te r i a l  as w e l l  a s  t h e  

temperature gradients  and thermal p rope r t i e s  of heterogeneous material 

Accordingly, e f f e c t i v e  thermal conductances a r e  used t o  cha rac t e r i z e  t h e  

hea t  flow i n  heterogeneous systems The e f f e c t i v e  thermal conduct iv i ty  

can be defined as a conductivi ty va lue  which, i f  subs t i t u t ed  i n t o  a 

Fourier- type equation,  w i l l  r e s u l t  i n  t h e  c o r r e c t  hea t  f l u x  f o r  a par t icu-  

lar system wi th  spec i f i ed  boundaries and dimensions 

opaque s o l i d  material, t h e  e f f e c t i v e  thermal conduct iv i ty  equals t h e  t r u e  

thermal conductivi ty ( i . e , ,  i t  is  independent of boundary p rope r t i e s ,  

system dimensions and temperature gradients ,  and is  a funct ion  only  of 

t h e  ma te r i a l  and its temperature) I n  heterogeneous systems, because of 

t h e  m u l t i p l i c i t y  of hea t  t r a n s f e r  mechanisms and t h e i r  non- lineari ty,  

t h e  e f f e c t i v e  thermal conductivi ty does not  have t h e  i n t r i n s i c  p rope r t i e s  

of t h e  t r u e  thermal conduct iv i ty  Ext rapola t ion  of thermal test d a t a  and 

use of e f f e c t i v e  thermal conduct iv i ty  va lues  f o r  condi t ions  o the r  than  

those during which t h e  va lues  w e r e  obtained can lead  t o  s i g n i f i c a n t  e r r o r s .  

For an i s o t r o p i c  

5 
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An important a p p l i c a t i o n  i l l u s t r a t i n g  t h e  ambiguity of thermal con- 

d u c t i v i t y  d a t a  can be found i n  t h e  i n t e r p r e t a t i o n  of lunar  thermal d a t a  

Photometric, po la r i za t ion ,  and in f ra red  observations of the  moon have 

l e d  t o  the  general  conclusion t h a t  t h e  luna r  su r face  is covered with a 

highly  porous m a t e r i a l  of low thermal conduct ivi ty .  

temperatures of the  luna r  surface ,  it is general ly  assumed t h a t  t h e  cover- 

ing ma te r i a l  is opaque i n  t h e  in f ra red  region and t h a t  i t s  conduct ivi ty  

is constant ,  independent of the  th ickness ,  temperature, o r  temperature 

gradients .  Because of the  apparent h igh poros i ty  and l a r g e  temperature 

g rad ien t s ,  r a d i a t i o n  t ransmiss ion i n  the  lunar  su r face  ma te r i a l  could be 

s i g n i f i c a n t  and ca lcu la t ions  based upon s i n g l e  valued thermal conductivi- 

ties may y i e l d  r e s u l t s  which a r e  not r ep resen ta t ive  of the  t r u e  thermal 

condi t ions  on t h e  luna r  su r face  

I n  analyses  of t h e  

The a t tempts  t o  cha rac te r i ze  t h e  na tu re  of the  lunar  su r face  have 

proceeded along another l i n e  of inves t iga t ion ,  i . e  , microwave observa- 

t i o n s  a t  d i f f e r e n t  s t ages  of luna t ions  and e c l i p s e s  t o  provide de ta i l ed  

s igna tu re  maps of lunar  subsurface temperatures 

constant and i t s  dependence on ma te r i a l  type and densi ty  a r e  parameters 

of s ign i f i cance  i n  evaluat ing the  p roper t i e s  of t h e  su r face  and subsur- 

face  ma te r i a l s  by microwave measurements. 

The complex d i e l e c t r i c  

Within t h e  p a s t  two years ,  measurement c a p a b i l i t i e s  i n  t h e  m i l l i m e t e r  

and microwave por t ions  of t h e  spectrum have experienced dramatic improve- 

ment, and d e t a i l e d  in f ra red  thermal maps f o r  many ind iv idua l  regions of 

t h e  moon over a f u l l  l una t ion  cycle  a r e  now ava i l ab le .  

a r e  ava i l ab le  t o  c o r r e l a t e  thermal p roper t i e s  and e l e c t r i c a l  p roper t i e s  

of ma te r i a l s  cu r ren t ly  under i n v e s t i g a t i o n  a s  r ep resen ta t ive  of t h e  luna r  

su r face  and t o  provide s igna tu re  c h a r a c t e r i s t i c s  of microwave and m i l l i -  

meter r a d i a t i o n  f o r  such ma te r i a l s  

a s  t o  t h e  i n t e r p r e t a t i o n  of lunar  thermal and microwave d a t a  

I n s u f f i c i e n t  da ta  

A s  a r e s u l t ,  some controversy e x i s t s  

One a n a l y t i c a l  technique f o r  studying heat  t r a n s f e r  i n  heterogeneous 

ma te r i a l s  is t o  a sc r ibe  the  t o t a l  heat  flow t o  t h e  super p o s i t i o n  of hea t  

flow due t o  t h e  mechanisms previously  l i s t e d ,  The e f f e c t i v e  thermal con- 

d u c t i v i t y  can be p a r t i t i o n e d  i n t o  contr ibut ions  f o r  each mechanism, and 

6 
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each contr ibut ion  can be  analyzed i n  terms of t he  physica l  q u a n t i t i e s  

responsib le  f o r  t he  mechanism of heat  flow. 

not  r igorous  ( t he re  is an i n t e r a c t i o n  between the  h e a t  flow mechanisms), 

it is use fu l  i n  expla in ing t h e  o v e r a l l  p rope r t i e s  of heterogeneous mate- 

rials and forming a sound b a s i s  f o r  engineering u se  of thermal property 

d a t a  

Although t h i s  technique is 

I n  our  work under Contract  NAS8-1567 (Everest ,  e t  a1 , 1962; Wechsler, 

e t  a1 , 1963, and Wechsler and Glaser,  19641, w e  have measured the  ef fec-  

t i v e  thermal conduc t iv i t i e s  of s o l i d ,  powdered, and ves i cu l a r  non-metallic 

materials Although some information has been obtained on the  importance 

of t he  var ious  hea t  t r a n s f e r  mechanisms, t h e  program has  been d i r ec t ed  

mainly toward obta in ing da t a  on t h e  p rope r t i e s  of pos tu la ted  lunar  su r f ace  

ma te r i a l s ,  Because of t he  fundamental importance of t h e  knowledge of t he  

mechanism of heat  t r a n s f e r  i n  heterogeneous ma te r i a l s  and t h e  a p p l i c a b i l i t y  

of t he  knowledge t o  both luna r  su r f ace  condi t ions  and o the r  systems where 

i n su l a t ing  ma te r i a l s  are used, our s tud ied  of non-metallic ma te r i a l s  have 

been extended 

I n  t h e  work described i n  t h i s  r epo r t ,  w e  have ca r r i ed  ou t  experimental 

and t h e o r e t i c a l  s t u d i e s  of t h e  mechanisms and rates of heat t r a n s f e r  i n  

p a r t i c u l a t e  and s i n t e r e d  materials t o  permit estimates of t he  s epa ra t e  

contr ibut ions  of r ad i a t ion  and conduction t o  be made We have a l s o  mea- 

sured t h e  d i e l e c t r i c  p rope r t i e s  of t he  materials used i n  t he  thermal 

s tud ie s  i n  an attempt t o  relate thermal conduct iv i ty ,  dens i ty ,  and di-  

e l e c t r i c  constant  da ta .  This information w i l l  a i d  i n  t h e  understanding 

of t he  thermal behavior of l una r  su r f ace  materials a s  w e l l  as  o the r  

p lanetary  su r f ace  materials 

7 





I11 DIELECTRIC CONSTANT 

A REVIEW OF EXISTING DATA 

1, Radio-Astronomical Observations 

Thermal emission of a celestial body, such as the moon, can be ob- 
served over a very wide frequency interval including short radio waves 
and microwaves From the measured radiant power density, one can determine 
the brightness temperature of the body, and, if the emittance is known, 
the black-body temperature of its surface Conversely, if the surface 
temperature is known from the other measurements (e.g , infrared radio- 
metry), the emittance may be determined and from it the dielectric con- 
stant In the case of lunar thermal emission, the situation is somewhat 
complicated by two circumstances: (a) because the rocks and minerals 
are fairly "transparent" to the radio waves, the radiant energy emitted 
by the surface contains components from various depths; and (b) the tem- 
perature of the moon varies periodically during lunation, though not in 
a simple harmonic manner. 

The following formulation of the problem was originated by Piddington 
and Minnett (1949) ,  who were the first to obtain quantitative microwave 
measurements of the lunar thermal emission at 1 25 cm wavelength over the 
entire lunation period. The problem was subsequently treated theoretically 
by Jaeger (1953) If the temperature of the lunar surface varies in time 
as : 

OD 

(111-1) 
'n) 

T(0,t) = 1 Tn cos (n s2 t - 
n= 0 

and the observed microwave brightness temperature contains contributions 
from varying depths according to the expression; 

m 

Tb = (1 - R) ti T (x) e-cLx dx I 
O 

(111-2) 
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then the solution of the heat transfer equation yields the following ex- 
pression for the time dependence of the observed microwave surface bright- 
ness temperature: 

(111-3) 

This solution applies for the homogeneous lunar model. 

0 = 2r/P is the lunation frequency (P = 29 53 days) 
(1 - R) = the radiofrequency emittance of the moon 

R = reflectance 
a = attenuation factor for the radiofrequency waves in the 

lunar material 

dgptk (Lr) to the heat wave penetration depth (Lt) 
An = L /L is the ratio of the radiofrequency penetration 

-1 L = a  
-112 

Lt = (9. F) 
p = density 
c = specific heat 
k = thermal conductivity 

'n tan $n = (- 1 + 6; 

In practice, the limited accuracy of the radio-astronomical observation 
permits only the first two terms of equation 111-3 to be determined. 
The first term, (1 - R )  To, is the(constant) brightness temperature, and 
the second term represents the phase-shifted first harmonic component of 
the periodic brightness temperature It is apparent that by definition 
the radiofrequency phase lag $, cannot exceed 40°, if it is found to be 
greater than 45", as it has been claimed to be by some observers, the 
homogeneous model of the lunar surface would have to be replaced by a 
more general one (e.g , a stratified model) 

10 
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From two observed parameters,  such as  t he  amplitude and t h e  phase of 

t he  br ightness  temperature, one can determine, a t  least i n  p r inc ip l e ,  

t he  two components of the  complex d i e l e c t r i c  constant t h a t  cha rac t e r i ze  

t h e  d i e l e c t r i c  p rope r t i e s  of t h e  l una r  surface ,  s ince:  

1 - r 2  "='i I +  E 

and 

1 t a n  $ = - 1 + c4Lt 

where 

and 

(111-4) 

(111-5) 

( 111-6) 

(111-7) 

The magnetic permeabili ty o f  t he  l una r  surface  is here  assumed to be 

The e a r l y  radio-astronomical observations by Piddington and equal  t o  1 

Minnett (1951), i nd i ca t ed  a phase l ag  of approximately 45' and thus 

j u s t i f i e d  the  assumption a 5 0, E"  % 0 

t a ined  by equation 111-4 from the  observed value of (1 - R) .  

Accordingly, E '  could b e  ob- 

In t h i s  way, Gibson (1958) estimated t h e  real p a r t  of t he  d i e l e c t r i c  

constant of t h e  l una r  su r f ace  ma te r i a l  t o  be between 3 and 5 More re- 

cent measurements seem t o  i n d i c a t e  t h a t  t h i s  es t imate  i s  too  high The 

Russian workers made seve ra l  s t u d i e s  of lunar  thermal emission a t  wave- 

lengths  from 0.4 t o  3.2 cm. A summary of t h i s  work may be  found, e g , 
i n  T r o i t s k i i  (1962) From h i s  own measurements as w e l l  a s  those sum- 

marized i n  t he  above mentioned papers,  T r o i t s k i i  concluded t h a t  t he  l u n a r  

su r f ace  has a d i e l e c t r i c  constant  E' 4 1 6  This estimate appears t o  be  

r a t h e r  low compared with o the r  d a t a  

Gary, Stacey and Drake (1965) l ed  the  authors t o  assume a value of E' % 

2 8 f o r  t h e  lunar  surface .  

Most recent  measurements made by 
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The pauci ty  of r e s u l t s  and the  wide spread of t h e  values  derived 

from the  observat ions  a r e  i n d i c a t i v e  of t h e  d i f f i c u l t i e s  involved i n  

the  da ta  a c q u i s i t i o n  and t h e i r  reduct ion.  Moreover, t h e  approximate 

ana lys i s  based on t h e  Piddington and Minnett method has a drawback i n  

r equ i r ing  a p r i o r i  knowledge of t h e  su r face  temperatures (from the  in-  

f r a r e d  measurements) and of t h e  thermal parameters of t h e  su r face  mate- 

r i a l  This s i t u a t i o n  makes i t  des i r ab le  t o  determine i n  the  laboratory 

both the  d i e l e c t r i c  p roper t i e s  and t h e  thermal parameters on representa-  

t i v e  samples of probable luna r  ma te r i a l s  p r i o r  t o  f u r t h e r  evaluat ion of 

radio- astronomical da ta .  

2 .  Radar Observations 

The moon and s e v e r a l  of t h e  near p lane t s  have been s tudied i n  numerous 

inves t iga t ions  by radar  a t  wavelengths ranging from 0.86 cm t o  784 cm, 

Radar s t u d i e s  of the  moon have been reviewed i n  d e t a i l  by P e t t e n g i l l  and 

Evans (1965). The radar  method is capable of providing manifold informa- 

t i o n  about t h e  moon, including i t s  dis tance,  r o t a t i o n ,  and topography; w e  

s h a l l  d iscuss  here  only t h a t  p a r t  of the  radar information which r e l a t e s  

t o  t h e  d i e l e c t r i c  p roper t i e s  of i t s  surface .  

I f  the  moon were a p e r f e c t  sphere  having a r e f l ec tance  R determined 

by t h e  d i e l e c t r i c  constant  of its su r face  ma te r i a l  according t o  equation 

111-4, i ts  radar  s c a t t e r i n g  c ross  sec t ion  would be: 

(111-8) 2 a = Rna 

where a is the  radius  of t h e  moon. 

following assumptions; 

t o  i l l umina te  t h e  whole moon, (b) t h e  pulse  is s u f f i c i e n t l y  long t o  allow 

t h e  r e f l e c t i o n s  from the  most d i s t a n t  p a r t s  of t h e  limb t o  be received, 

and (c) t h e  wavelength A 0  is shor t  compared with t h e  radius  of t h e  moon 

Most of the  moon's su r face  is  a c t u a l l y  found t o  be gen t ly  undulating 

about the  mean spher i ca l  shape (Nagfors, 1964) 

described by an amendment of  equation 111-8 

Equation 111-8 i s  v a l i d  under t h e  

(a) t h e  beam of t h e  radar  antenna is wide enough 

This can be formally 

2 a = g Rra 

12 
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where g is a d i r e c t i v i t y  f a c t o r  of t he  form: 

g = 1 + nu2; (111-10) 

d 

J 

J 

4 

he re  n is a constant  (9 2) and a is a term comparable t o  t he  mean square 

surface  s lope  

(Lambertian) s c a t t e r e r ,  i n  t h a t  case g has a t h e o r e t i c a l  value of 8 /3  

The t o t a l  radar  cross  s ec t ion  contains both components. P e t t e n g i l l  and 

Evans estimated about 82% of t h e  projec ted  su r f ace  t o  be of t he  "diffuse" 

kind and 18% t o  be of t he  "smooth" kind, when observed with a 68 cm 

wavelength radar .  

Some a reas  of t h e  moon's su r f ace  r e f l e c t  as a rough 

The d i r e c t i v i t y  f a c t o r  g has been ca lcula ted  t h e o r e t i c a l l y  f o r  d i f -  

f e r e n t  kinds of s c a t t e r e r s  (Grieg, et a1 , 1948; Daniels,  1961; Evans 

and P e t t e n g i l l ,  1963; and Rea, et  a 1  , 1964) This makes it poss ib l e  

t o  dstermine t h e  r e f l ec t ance  R from the  experimentally observed value  

of u by using equation 111-9 Earlier determinations of t he  s c a t t e r i n g  

cross  s e c t i o n  w e r e  sub jec t  t o  f a i r l y  l a r g e  e r r o r s  because of ins t rumenta l  

d i f f i c u l t i e s ,  such as c a l i b r a t i o n  of the  system, antenna gain ,  t rans-  

mit ted  power v a r i a t i o n s  and atmospheric a t t enua t ion ,  t h e  e f f e c t  of pulse- 

length  dependence on the  radar  r e tu rn ,  t he  e f f e c t  of local ized  s c a t t e r e r s ,  

and the  Doppler s h i f t  i n  t h e  r e t u r n  pulse  frequency caused by lunar  ro ta-  

t i o n  Consequently, t h e  o r i g i n a l  estimates of t he  d i e l e c t r i c  constant 

of t he  l una r  su r f ace  were not very r e l i a b l e ,  

From a compilation of radar  da t a ,  Senior,  S iegel ,  and Giraud (1962) 

estimated the  real p a r t  of t h e  d i e l e c t r i c  constant t o  have a value of 

approximately E' 1 1 08, which is undoubtedly too low Evans and 

P e t t e n g i l l  (1963) obtained a value of E' 69 2.6 t o  2 8 from t h e i r  measure- 

ments; and Rea ,  Hetherington, and M i f f l i n  (1964) a r r ived  a t  a value 

E '  69 2 8 by a method of ana lys i s  d i f f e r e n t  from those previously c i t e d  

Most recent ly ,  Hagfors and h i s  coworkers (1966) concluded from t h e i r  

measurements made with c i r c u l a r l y  polar ized  radar  a t  23 cm wavelength 

t h a t  a two-layer model of t he  l una r  su r f ace  provides t h e  bes t  f i t  w i th  

t he  observation The top l a y e r  w a s  est imated t o  have a d i e l e c t r i c  constant 
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E '  of about 1.7 t o  1,8 and a depth of approximately 20 cm, on t h e  average, 

The base l a y e r  would have a value  of E' Fb 4.5 t o  5. 

3 Laboratory Measurements 

Laboratory d a t a  on d i e l e c t r i c  p roper t i e s  of p a r t i c u l a t e  ma te r i a l s  

The ea r ly  work of measured a t  microwave f requencies  a r e  very sparse .  

S t r a i t o n  and Tolber t  (1947) d e a l s  wi th  a few terrestrial mate r i a l s  de- 

f ined  only a s  "Arizona s o i l " ,  o r  "Austin, Texas, s o i l ,  very dry"; d a t a  

were obtained a t  a wavelength of 3.2 cm. For the  two mate r i a l s  r e fe r red  

t o  above, the  d i e l e c t r i c  parameters measured by S t r a i t o n  and Tolber t  are, 

re spec t ive ly ,  E' = 3.2, 8'' = 0.19 and E '  = 2 . 8 ,  E"  = 0.014. Similar  sets 

of d a t a  on var ious  types of s o i l s  a r e  tabulated i n  t h e  compendium on di-  

e l e c t r i c s  ed i t ed  by Von Hippel (1954). The value of t h i s  p a r t i c u l a r  

t abu la t ion  is i n  t h e  wide frequency range it  covers (lo2 t o  lolo cps) 

Fensler  and coworkers (1962) made an extensive study of electromagnetic 

parameters,  including t h e  d i e l e c t r i c  constants ,  of numerous rocks and 

meteor i tes  both i n  s o l i d  and powdered form. 

mental s tudy of t h e  e f f e c t  of p a r t i c l e  s i z e  and packing f a c t o r  on the  

e f f e c t i v e  d i e l e c t r i c  constant  of some of the  se l ec ted  m a t e r i a l s ,  Because 

these  measurements w e r e  made at  low frequencies (1000 cps) t h e  comparison 

wi th  those  made a t  UHF and microwave frequencies ( lo7  t o  l o l o  cps) is 

uncer ta in .  Only the  s o l i d  chondri tes  and t e k t i t e s  w e r e  measured a t  UHF 

frequencies  (between 420 and 1800 Mc) 

glassy t e k t i t e s  from var ious  l o c a l i t i e s  was found t o  vary between 3 88 

and 8.03 (measured a t  500 M c )  

and 45.9 and high d i e l e c t r i c  l o s s  tangent (between 0 028 and 0 199) 

Their work includes an experi-  

The d i e l e c t r i c  constant E '  of 

Chondrites had values  of E '  between 10.4 

T r o i t s k i i  (1962) r e f e r s  t o  (unpublished) measurements made a t  a wave- 

length of 3 2 cm (% l o l o  cps)  on var ious  t e r r e s t r i a l  volcanic  rocks of 

Armenia and Kamchatka ( t u f f ,  tufo- lava, volcanic  s l a g ,  obsidian,  pumice, 

c lay,  e t c . ) .  Without f u r t h e r  d e t a i l  regarding t h e  experimental work, he 

s t a t e s  t h a t  t h e  d i e l e c t r i c  constant  E *  was i n  t h e  range from 1.65 t o  3.3 
f o r  d i f f e r e n t  rocks having dens i ty  between 0 5 and 1 25 g/cm3 The l o s s  

tangent of these  ma te r i a l s  was between 6 x 10 t h e  speci-  

mens were measured i n  dry air under ordinary condi t ions  

-3 and 23 x 
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B. THEORETICAL CONSIDERATIONS 

1. Reflectance and Emittance of Dielectric Mater ia ls  

Reflectance of a semi- inf in i te  d i e l e c t r i c  body bounded by a plane 

surface  is  given, f o r  normal incidence,  by formula 111-4 c i t e d  earlier 

A t  angles of incidence o the r  than zero (normal inc idence) ,  r e f l ec t ance  

is  given by the  well-known Fresnel  formulas. 

These formulas (including equation 111-4) a r e  v a l i d  under t he  follow- 

(a) t h e  curvature  of t he  su r f ace  i s  l a r g e  compared wi th  ing assumptions: 

t h e  wavelength, (b) t he  su r f ace  roughness is smal l  compared wi th  t he  wave- 

length ,  (c)  t he  d i e l e c t r i c  body is homogeneous on a scale small compared 

with t h e  wavelength; and (d) t h e  d i e l e c t r i c  body i s  th i ck  compared with 

t he  penet ra t ion  depth ("semi- infinite"). 

m e t  under labora tory  condi t ions  with c a r e f u l l y  prepared powdered samples 

It i s  obvious, however, t h a t  when applied t o  c e l e s t i a l  bodies,  such as  

t h e  moon, t h e  formulas may no t  s t r i c t l y  apply Assumption (a) is 

usual ly  j u s t i f i e d  by the  observat ion  t h a t  t h e  radar r e f l e c t i o n  obtained 

with a narrow-beam antenna and a short- pulse r e so lu t ion  comes predominantly 

from the  c e n t r a l  a r ea  of t he  d i s c ,  t h e  r e f l ec t ed  power f a l l i n g  off  very 

rapidly  toward the  limb 

of the  su r f ace  p r o f i l e  information gathered from the  Surveyor experiment 

I f  the  su r f ace  is rough on a s c a l e  comparable t o  t he  wavelength, d i f f u s e  

r e f l e c t i o n  w i l l  occur i n  add i t i on  t o  the  specular  r e f l ec t ion .  Smooth 

undulation of t h e  su r f ace  on a s c a l e  g rea t e r  than the  wavelength can 

be accounted f o r  by t h e  method of Hagfors (1964) 

e l e c t r i c  material cons t i t u t i ng  the  su r f ace  of t h e  moon o r  t h e  p lanet  is  

l i k e l y  t o  be good on t h e  s c a l e  of short-wavelength microwaves 

numerous observations i n d i c a t e  t h a t  t h e  d i e l e c t r i c  p rope r t i e s  of t he  

lunar  su r f ace  vary considerably over areas of d i s t i n c t l y  d i f f e r e n t  geology 

(e.g., maria vs c r a t e r  r i m s )  ( P e t t e n g i l l  and Evans, 1965) F ina l ly ,  

t h e  assumption of "semi- infinite"  thickness is c e r t a i n l y  v a l i d ,  inasmuch 

as the  pene t r a t i on  depth is  only of t h e  order  of a few wavelengths 

These condi t ions  can be r ead i ly  

Assumption (b) may be somewhat i n  doubt i n  view 

Homogeneity of the  d i-  

However, 

The ana lys i s  of radar  da t a  i n  terms of t h e  d i e l e c t r i c  proper t ies  of 

t h e  sphe r i ca l  celestial bodies based on Fresnel  formulas has  been 
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c r i t i c i z e d  by Rea and coworkers (1964) These authors  claim t h a t  the  

quan t i ty  R i n  equations 111-8 and 111-9 cannot be i n t e r p r e t e d  as the  

F resne l  r e f l e c t i o n  c o e f f i c i e n t  a t  normal incidence (equation 111-4), but 

r a t h e r  has  t h e  meaning of t h e  albedo averaged over t h e  hemisphere. 

approach is based on treatment of t h e  s c a t t e r i n g  of l i g h t  by rough d i-  

e l e c t r i c  su r faces  where the  su r face  elements a r e  l a r g e  i n  comparison 

with the  wavelength. The r e s u l t s  of ana lys i s  of ex i s t ing  rada r  r e f l ec-  

t i o n  d a t a  by t h e i r  method do not  d i f f e r  appreciably i n  numerical values 

from o the r  r e s u l t s  a s  f a r  a s  t h e  d i e l e c t r i c  constants  a r e  concerned; 

some d i f f e rences  appear i n  t h e  values  of average s lope  da ta .  

Their  

Emittance E of a d i e l e c t r i c  body can be obtained from t h e  r e f l ec tance  

by means of the  r e l a t ion :  

(111-11) R + E + T * = l  

where T* is  the  t ransmit tance 

Kirchhoff ' s  law by s u b s t i t u t i n g  emittance fo r  absorptance. 

i n f i n i t e "  body T* = 0 and, consequently, 

I n  t h i s  r e l a t i o n  w e  made i m p l i c i t  use of 

In a "semi- 

E = R - l  (111-12) 

The assumption T* = 0 i s  j u s t i f i e d  f o r  a c e l e s t i a l  body of a l a r g e  s i z e ,  

such a s  t h e  moon. Under laboratory condi t ions  t h i s  may not  be t h e  case  

and t ransmit tance r e s u l t i n g  from t h e  f i n i t e  th ickness  must be taken i n t o  

account 

I f  the  r e f l ec tance  R i n  formula 111-12 is taken t o  be t h e  Fresnel  

r e f l ec tance  a s  given by equat ion 111-4, E has t h e  meaning of t h e  di rec-  

t i o n a l ,  normal emittance. However, i t  can be shown (Gardon, 1950) t h a t  

t h e  thermal r a d i a t i o n  emerging from t h e  plane boundary of a semi- inf ini te  

d i e l e c t r i c  body is not d i r e c t i o n a l  but  d i f f u s e ,  obeying very near ly  a 

cosine d i r e c t i o n a l  law. Consequently, E should be  in t e rp re ted  a s  a hemi- 

spher i ca l  emittance, i n  a way analogous t o  t h e  argument given by Rea, 

Hetherington, and M i f f l i n  (1964) f o r  the  d i f f u s e  r e f l ec tance  
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2 

Electromagnetic waves t r ave l ing  through a lossy medium a r e  charac ter ized  

Complex D i e l e c t r i c  Constant and the  Penet ra t ion  Depth 

by the two complex parameters: 

E = E' - i E "  ( d i e l e c t r i c  constant)  (111-13) 

= 1-1' - i p "  (permeabili ty) 

The amplitude va r i e s  exponent ia l ly  as :  

i w t  - ax 

where w is t he  angular frequency and 

y = a + i B  (111-14) 

is the  propagation constant .  As a is assumed always pos i t i ve ,  the  waves 

a r e  a t tenuated  a s  they proceed forward: 

(111-15) -ax i ( w t  - f3x) e e  

a is the  absorption coe f f i c i en t  and f3 = w/v i s  the  phase constant From 

Maxwell's equations,  one obta ins  f o r  the  phase ve loc i ty  v i n  the  medium: 

(111- 16) -1/2 v = c (€1-1) 

and f o r  the  propagation constant ;  

y = ? J ; ; .  (111-17) 

Inse r t ing  i n  111-17 from 111-13 and equating the  r e a l  p a r t s  of 111-17 and 

111-14, one obta ins  f o r  the  a t t enua t ion  f ac to r :  

a = - A wL 
2 (E'  1-1'' + E" u') (111-18) 

4nc 

1 7  

artbur B.;lCittIr,%ttr. 



Planetary  rocks and 

hence p 1  = 1 and pl' 

I f ,  furthermore, E" 

s o i l s  may reasonably be assumed t o  be non-magnetic, 

= 0 I n  t h i s  case, equation 111-18 s impl i f i ed  to :  

n 
L (111-19) 

El l  
A W  n v  a = - E l l  

4n c 
= - - 

e 2 

<< E '  and u = 1, w e  obta in  from 111-16: 

-1 and fo r  the  pene t ra t ion  depth Lr = a 

(111-20) 

(111-21) 

This may be expressed i n  terms of o the r  parameters o f t en  used i n  the  

r ad io  engineering p rac t i ce ,  t h e  loss tangent def ined as: 

t a n  6 = < (111-22) 

or  t h e  d i e l e c t r i c  conduct ivi ty ,  defined as :  

a = w E" 

Then w e  obta in:  

(111-23) 

(111-24) 

However, a does not necessa r i ly  represent  t h e  conductivity i n  the  

conventional sense .  It may include the  motion of f r e e  charge c a r r i e r s  

( e l ec t rons )  i f  conducting m a t e r i a l  is present  i n  t h e  medium, and may a l s o  

r e s u l t  from o the r  d i s s i p a t i v e  processes on t h e  molecular s c a l e ,  even i n  

t h e  absence of f r e e  c a r r i e r s .  

From t h e  d e f i n i t i o n  of a (equation 111-15), t h e  pene t ra t ion  depth is  

seen t o  represent  t h a t  depth a t  which t h e  amplitude of t h e  electromagnetic 
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wave decreased t o  e-' o r  t o  about 37% of i t s  value at t h e  su r f ace .  

cording t o  the  exponential  l a w ,  t h e  amplitude would drop t o  13 5% at a 

depth of 2Lr, t o  4.98% at  3Lr, and so f o r t h .  

Ac- 

Equation 111-24 shows t h a t  t h e  pene t r a t i on  depth decreases wi th  f ree-  

space wavelength X Taking as t y p i c a l  va lues  E '  = 2 3 and tan  6 = 0 01, 

w e  can estimate t h e  pene t r a t i on  depth f o r  3 cm wavelength r a d i a t i o n  Lr = 

63 cm; f o r  3 mm wavelength, t he  pene t r a t i on  depth would be  only 5.3 cm. 

It is a l s o  seen t h a t  pene t r a t i on  depth increases  wi th  decreasing value 

of t a n  6 I n  materials of l o w  d i e l e c t r i c  loss (E'' << E ' ) ,  t a n  6 i s  t h e  

dominant f a c t o r  determining t h e  penet ra t ion  depth; a t  t h e  same t i m e ,  t he  

real part of t he  d i e l e c t r i c  constant  ( E ' )  becomes the  f a c t o r  determining 

the  ref lec tance .  

3 D i e l e c t r i c  P rope r t i e s  of Sol ids  and t h e  Nature of t he  Loss 
Mechanism 

Both E' and E"  are frequency-dependent and i n t e r r e l a t e d  i n  such a 

manner t h a t  i f  one is given as a funct ion  of frequency over t he  e n t i r e  

frequency range from zero  t o  i n f i n i t y ,  t h e  value of t he  o the r  i s  uniquely 

determined 

described, f o r  i n s t ance ,  by t h e  Kramers-Kronig r e l a t i o n s ,  which are a 

genera l  form of d ispers ion r e l a t i o n s .  

This mutual dependence of E '  and E" may be mathematically 

The physica l  reason f o r  t he  exis tence  of d i spe r s ion  r e l a t i o n s  i n  di-  

e l e c t r i c  materials i s  the  presence of permanent o r  induced molecular and 

atomic d ipoles  i n  t he  s t r u c t u r e  of material, capable of resonant i n t e r-  

ac t ion  wi th  t he  electromagnetic waves The resonances a r e  sharp and 

c l e a r l y  observable only i n  gases and l i q u i d s  possessing simple molecular 

s t r u c t u r e ,  which, because of d i spe r s ion  r e l a t i o n s ,  a l s o  permit quant i ta-  

t i v e  ca l cu l a t ions  t o  be  made wi th  a f a i r  degree of accuracy 

In s o l i d s ,  t he  s i t u a t i o n  is complicated by t h e  simultaneous ac t ion  

of s eve ra l  d i spe r s ive  mechanisms. A t  low f requencies ,  d i e l e c t r i c  a f t e r -  

e f f e c t s  of t he  Maxwell type cause d i s s i p a t i o n  of energy i n  the  medium, 

p a r t i c u l a r l y  i f  i t  is heterogeneous. 

heterogeneous media is t h e  migration of ions  adsorbed on i n t e r n a l  surfaces  

A t  higher frequencies t h e  molecular d ipole  o r i e n t a t i o n  e f f e c t s  of t he  

Another mechanism e f f e c t i v e  i n  

19 



Debye type a r e  t h e  p r i n c i p a l  source  of d i s s ipa t ion .  

Debye theory,  molecules o r  p a r t s  of molecules carrying an e l e c t r i c a l  

d ipo le  moment tend t o  o r i e n t  themselves along the  a l t e r n a t i n g  e l e c t r i c  

f i e l d  of t h e  electromagnetic wave This tendency t o  r o t a t e  is opposed 

by " f r i c t i o n a l"  o r  "viscous" fo rces  assumed t o  be propor t ional  t o  the  

angular  ve loc i ty  Consequently, the  o r i e n t a t i o n  l a g s  behind t h e  e l e c t r i c  

f i e l d  by an angle  6. A t  very low frequencies 6 = 0; a s  t h e  frequency in- 

creases ,  a resonance i s  approached and passed. 

a t t a i n s  a maximum and then decreases  t o  l o w  values  a t  very high frequencies 

as the  d ipo les  cease t o  follow t h e  rapid  v ib ra t ions  of t h e  wave f i e l d .  

Since n a t u r a l  s o l i d  ma te r i a l s  involve a g r e a t  v a r i e t y  of molecular group- 

ings ,  t h e  resonance f requencies  a r e  spread over a wide frequency spectrum 

from about 10 t o  10 cps Beyond about 10" cps, e l ec t ron ic  po la r i za-  

t i o n  i n  the  ind iv idua l  atoms is  responsible  f o r  t h e  d i e l e c t r i c  p roper t i e s  

of s o l i d s  

According t o  t h e  

A t  resonance, I t a n  6 I 

5 10 

A s  a r e s u l t  of t h i s  spread of d ispers ion f requencies ,  t h e  d i e l e c t r i c  

parameters of s i l i c a t e  minerals  and rocks are found t o  vary with frequency 

only t o  a s l i g h t  degree; i n  f a c t ,  both E' and E'' a r e  found i n  p r a c t i c e  

nea r ly  constant  between about lo7 t o  l o l o  cps (von Hippel,  1954) 

The r e a l  p a r t  of t h e  d i e l e c t r i c  constant  E' is determined l a rge ly  by 

t h e  chemical s t r u c t u r e  of t h e  s o l i d  and is  r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  

presence of impur i t i e s  The reverse  i s  t r u e  of t h e  loss tangent ( t an  6 )  

which is  s t rong ly  influenced by the  presence o r  absence of impuri t ies  

This may be i l l u s t r a t e d  on t h e  example of t h e  s imples t  s i l i c a t e ,  i . e  , 
s i l i c a  (SiO,) 

lowest l o s s  tangent of a l l  s i l i c a t e s  

d i t i o n a l  ions  a r e  introduced, t h e  l o s s  increases  

Pure s i l i c a  i n  t h e  v i t r eous  form ("fused quartz") has t h e  

As shown i n  Table 111-1, when ad- 

Addition of ions o the r  than sodium produces s i m i l a r  e f f e c t s  Un- 

for tuna te ly ,  no simple r u l e s  c o r r e l a t i n g  t an  6 with the  concentra t ion of 

any p a r t i c u l a r  i o n  i n  a given s i l i c a t e  matr ix  seem t o  be evident ,  and 

t h e  body of empir ical  f a c t s  is very l imited.  

impossible t o  draw any conclusions regarding the  presence of minor con- 

s t i t u t i o n  elements i n  n a t u r a l l y  occurr ing s i l i c a t e s  from the  experimentally 

determined values of  t an  6 

Consequently, i t  appears 
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TABLE 111-1 
d 

I 

DIELECTRIC LOSS I N  SILICA AND SODIUM SILICATE GLASSES 

AT A FREQUENCY OF l o l o  c / s  PETn 25°C 

100% Si02 0.0001 

96% Si02, 4% B203 and Na20 0.0009 

91% Si02, 9% Na20 

80% Si02, 20% Na20 

70% Si02, 30% Na20 

Source: von Hippel  (1954) 

I 

0.013 

0 . 0 2 0  

0.024 
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4 ,  D i e l e c t r i c  Constants of P a r t i c u l a t e  Media and Mixtures 

One of the  ob jec t ives  of t h e  present  inves t iga t ion  w a s  t o  study t h e  

d i e l e c t r i c  p roper t i e s  of  p a r t i c u l a t e  media For t h i s  reason w e  s h a l l  

b r i e f l y  review t h e  t h e o r e t i c a l  b a s i s  of determining t h e  e f f e c t i v e  di-  

e l e c t r i c  parameters of such media from t h e  p roper t i e s  of t h e  s o l i d  W e  

s h a l l  assume from the o u t s e t  t h a t  the  medium c o n s i s t s  of p a r t i c l e s  uni- 

formly smal ler  than t h e  wavelength, and t h a t  the  volume f r a c t i o n  occupied 

by p a r t i c l e s  of i- th  kind is f .  and t h e  volume f r a c t i o n  of t h e  voids f o  

is vacuum, the  volume fraction: being normalized, f i  = 1 
0 

The problem of t h e  e f f e c t i v e  d i e l e c t r i c  constant  of a d i l u t e  medium 

containing smal l  p a r t i c l e s  has been solved by many researchers ,  s t a r t i n g  

wi th  Maxwell i n  1873 Some of the  o f t en  used formulae a r e  v a l i d  only f o r  

s p e c i a l  cases  (e.g , spher i ca l  p a r t i c l e s )  or over a small concentra t ion 

range. T r o i t s k i i  (1962) uses a formula of the  following type: 

(111- 2 5) E '  = & '  [ l  - 3fo (-+ fo)  -1 1 

This formula, which T r o i t s k i i  a t t r i b u t e s  t o  Odelevskii and Levin, g ives  

t h e  e f f e c t i v e  d i e l e c t r i c  constant  E'  of a porous medium containing only 

one kind of p a r t i c l e  of d i e l e c t r i c  constant  E ' ;  it r e f e r s  t o  the  r e a l  

p a r t s  of E only 

adapted f o r  the  volume f r a c t i o n  f of the  p a r t i c l e s  r a t h e r  than t h a t  of 

t h e  voids: 

P e t t e n g i l l  and Evans make use of an equivalent  formula I 

1 + 3 y  
1 - Y  

(111-26) 

where 

y =  fU  
E '  + 2 

A l l  of these  formulas can be deduced from a general  expression de- 

r ived  by Emslie (1966) of the  form: 
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(n - iE)2  - 1 (ni - iki)’ - 1 

+ iQ2 -I- 2 = I f i  (ni - iki)’ + 2 
(111-27) 

Here, n and k des ignate  t h e  real and imaginary p a r t s  of t h e  r e f r a c t i v e  

index, def ined by the  following r e l a t i o n :  

The “barred“ q u a n t i t i e s  represent  t he  e f f e c t i v e  parameters of t h e  par t icu-  

l a t e  medium The q u a n t i t i e s  w i th  i nd ices  r e f e r  t o  t he  parameters of t h e  

i- th  ( so l id )  component, i = 0 r e f e r s  t o  vacuum (voids).  Furthermore, from 

equation 111-28 we obta in ;  

2 
E ’  = n - k2, 

E ”  = 2nk, and (111-29) 

k = (1/2) n t a n  6.  

Formula 111-26 is obtained from 111-27 simply by s u b s t i t u t i n g  the  
2 following values .  E ’  = n , k = 0 (hence t a n  6 = 0) ,  and f = f These 

formulas have been used i n  radio-astronomical and radar  i nves t iga t ions  

of t he  moon t o  i n f e r  t h e  degree of poros i ty  of t h e  su r f ace  material We 

s h a l l  make use of them i n  t he  i n t e r p r e t a t i o n  of t he  experimental r e s u l t s  

i 

The r e a l  p a r t  of t h e  d i e l e c t r i c  constant E ’  of s o l i d  terrestrial rocks 

of t he  types l i k e l y  t o  occur on t h e  moon ranges from about 5 (quartz 

sandstone) t o  17 (o l iv ine  b a s a l t ) ;  a t  t he  same t i m e ,  t h e  observations of 

t h e  lunar  p rope r t i e s  r e s u l t  i n  estimates of E ’  between 1 6 and 2 8 

(Section 111, A, 1 and 2) 

t i o n  t h a t  t he  l una r  su r f ace  is porous o r  ves i cu l a r ,  i n  which case i ts  

e f f e c t i v e  void f r a c t i o n  is then ca lcula ted  from equat ion  111-25 o r  111-26. 

The d i f f e r ence  can be explained by t h e  assump- 

I n  t h i s  way T r o i t s k i i  (1962) estimated t h e  e f f e c t i v e  dens i ty  of t h e  

lunar  su r f ace  t o  be between 0 , 5  and 1 25 gm/cm3; s i m i l a r l y ,  P e t t e n g i l l  and 
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Evans (1965) concluded t h e  e f f e c t i v e  dens i ty  of t h e  l una r  su r f ace  t o  be 

approximately 40% of t h e  s o l i d .  

5. Rela t ions  Between t h e  Dielectric Thermal Proper t ies  of 
P a r t i c u l a t e  Materials 

I n  radio- astronomical s t u d i e s  of t h e  lunar  su r f ace  t h e  thermal and 

d i e l e c t r i c  p rope r t i e s  are r e l a t e d  by v i r t u e  of equations 111-2 and 111-3 

It seems reasonable,  therefore ,  t o  i nqu i r e  whether t h e r e  i s  any funda- 

mental  r e l a t i o n  between t h e  electrical and thermal parameters of par t icu-  

l a t e  materials pe r t i nen t  t o  t h e  present  inves t iga t ion .  

I n  a genera l  sense,  w e  may assert t h a t  t h e r e  i s  no fundamental con- 

nec t ion  between t h e  d i e l e c t r i c  constant  and thermal conductivi ty or 
s p e c i f i c  hea t  The well-known Wiedemann-Franz l a w  which expresses t h e  

p ropo r t i ona l i t y  between thermal and e l e c t r i c a l  conduc t i v i t i e s  app l i e s  

only t o  a very s p e c i a l  class o f  s o l i d s ,  namely metals  It r e s u l t s  from 

t h e  f a c t  t h a t  f r e e  e l ec t rons  a r e  respons ib le  both f o r  t h e  cur ren t  flow 

and most of  t h e  hea t  flow. 

I n  d i e l e c t r i c  s o l i d s  t h e r e  are normally no free e lec t rons  and t h e  

electric po l a r i z a t i on  and hea t  conduction are caused by e n t i r e l y  independ- 

e n t  mechanisms. The d i e l e c t r i c  constant  is a measure of t h e  deformabil i ty 

of t h e  e l ec t ron  o r b i t a l s  respons ib le  f o r  chemical bonding of t h e  s o l i d  

( p o l a r i z a b i l i t y )  by t h e  e l e c t r i c  f i e l d .  

are determined i n  p r i n c i p l e  by t h e i r  e l a s t i c  p rope r t i e s  Spec i f i c  hea t  

is r e l a t e d  t o  t h e  d i s t r i b u t i o n  of energy of thermally exc i ted  quantized 

l a t t i c e  v ib r a t i ons  (phonons), while hea t  conduct iv i ty  is  determined by 

s c a t t e r i n g  of phonons by latt ice imperfections.  Consequently, any rela- 

t i o n s  between d i e l e c t r i c  and thermal p rope r t i e s  are i n d i r e c t  and are 

ce r t a i n ly  not  e s t ab l i shed  a t  present  on a cons i s t en t  t h e o r e t i c a l  b a s i s .  

The thermal p rope r t i e s  of s o l i d s  

However, when dens i ty  is considered a var iab le ,  as is  t h e  case i n  

p a r t i c u l a t e  mater ia l s ,  e l e c t r i c a l  and thermal p rope r t i e s  become imp l i c i t l y  

dependent. 

discussed by T r o i t s k i i  (1962), who noted t h a t  t h e  r a t i o  6n of t h e  e l e c t r i c a l  

penet ra t ion  depth t o  t h e  thermal penet ra t ion  depth is  very near ly  propor- 

t i o n a l  t o  t h e  wavelength ho of t h e  rad io  waves i n  t h e  range from 0.4 t o  

Semi-empirical i nves t i ga t i ons  of t h i s  dependence have been 
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3.2 cm and has a numerical va lue  of about 2 cm-l ,  i e , 

(111- 30) 

From t h i s  r e l a t i o n  and from equat ion  111-24, T r o i t s k i i  concluded t h a t  t h e  

loss  tangent of lunar  su r f ace  material i s  independent of wavelength 

He considered h i s  f indings  t o  be cons i s t en t  with t h e  behavior of t y p i c a l  

s i l i c a t e  minerals (see a l s o  preceding sec t ion ) ,  and he  observed t h a t  such 

behavior would not be  t h e  ca se  i f  t he re  w e r e  any appreciable  f r a c t i o n  

(g rea t e r  than 2-3%) of m e t a l l i c  p a r t i c l e s  of me teo r i t i c  o r i g i n  present  

i n  the  s u r f a c e  ma te r i a l  

f o r  L 

of t he  form: 

By i n s e r t i n g  f o r  Lt from equation 111-3 and 

from equat ion  111-24, he deduced from equation 111-30 an equation 

Q- - = C1cy (111-31) 
P 

Where c i s  t h e  s p e c i f i c  heat  of t h e  su r f ace  ma te r i a l ,  y = (kpc)-1/2 and 

Clis a constant independent of t h e  cons t i t u t i on  of t h e  ma te r i a l  and i t s  

densi ty  T r o i t s k i i  used t h i s  equation t o  de r ive  JE' of t he  lunar  su r f ace  

from e l e c t r i c a l l y  measured values  of t a n  6 / p  of t e r r e s t r i a l  materials and 

radiometr ic  va lues  of y of t h e  l una r  su r f ace  I n  doing so,  T r o i t s k i i  

a r r ived a t  a value of e f f e c t i v e  d i e l e c t r i c  constant  ;' near un i ty ;  by 

adjus t ing  both E' and dens i ty ,  he estimated E '  t o  be near  1.6 and ef fec-  

t i v e  dens i ty  t o  be  0.5, The value of E' obtained i n  t h i s  manner is  too  

low i n  comparison with more recent  da ta .  

equation 111-31 i s  a t  b e s t  an empir ica l  c o r r e l a t i o n  and has no b a s i s  i n  

fundamental r e l a t i ons .  

This is  not su rp r i s ing  because 

C. DIELECTRIC CONSTANT MEASUREMFL'7TS AT WAVELENGTHS OF 3.2 CM AND 1.2 CM 

1. Methods 

We used two methods t o  measure t he  complex d i e l e c t r i c  constants of 

p a r t i c u l a t e  materials a t  microwave frequencies 

vacuum and over a temperature range from 77'K t o  400°K, w e  used the  

terminated waveguide method (Roberts and von Hippel, 1954) For d i e l e c t r i c  

For measurements i n  
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powders i n  air and a t  ambient temperatures,  we supplemented t h e  da ta  by 

measurements of a t t enua ted  s tanding waves i n  a s l o t t e d  waveguide f i l l e d  

wi th  t h e  sample (Redbeffer, 1947) 

The p r i n c i p l e  of t h e  terminated waveguide method is shown schematically 

i n  Figure  111-1. 

waveguide terminated by a s h o r t  c i r c u i t .  

guide in terposed between the  sample and t h e  generator  makes i t  poss ib le  

t o  determine t h e  p o s i t i o n  of t h e  f i r s t  minimum (xo) and t h e  r e l a t i v e  

amplitude r = E min/Em,, of t h e  maxima and minima by means of a t r ave l ing  

de tec to r  probe 

tween the  s l o t t e d  s e c t i o n  and the  sample, and t h e  s c a l e  on t h e  probe 

reads from an a r b i t r a r y  o r ig in ,  the  p o s i t i o n  of t h e  f i r s t  minimum must be 

found by taking a reference reading of t h e  minimum i n  t h e  absence of 

sample 

on the  s c a l e  of t h e  s l o t t e d  s e c t i o n  a t  xl,  and i n  t h e  presence of t h e  sample 

The sample of th ickness  D f i l l s  t h e  end s e c t i o n  of a 

A s l o t t e d  s e c t i o n  of t h e  wave- 

Because t h e r e  is a length of waveguide in tervening be- 

I f  the  p o s i t i o n  of t h e  minimum i n  t h e  absence of sample is read 

is read a t  x2, then: 

x = x l - x 2 +  

where n and n2 are two in tege r s .  
1 

I f  t h e  sample is t h i n  (D < 114 

(111-32) n - + n  Al 2 - D  
1 2  2 2  

A ), t h e  number of half-wavelengths 1 
i n  t h e  waveguide is t h e  same with or without sample (nl = n2 = n ) ,  and 

w e  may wri te :  

x = x l - x 2 + n - - D .  x1 
2 (111-33) 

It can be shown from transmission l i n e  theory t h a t  upon r e f l e c t i o n  

a t  a shor t- c i rcu i t  terminat ion over la id  by a th ickness  D of sample having 

a complex propagation constant  y = a + i B  (see equations 111-14 t o  I I I -19) ,  

t h e  following r e l a t i o n  holds: 

A~ r - i t a n  (2nxO/x1) 

tanhyl)=- i -  27rD 1 - i r tan  (27rxo/hl) YD 
(111-34) 
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Generato I: 

Waveguide 
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Source. Roberts and vonWippe1 

FIGURE 111-1 PRINCIPLE OF THE TERMINATED WAVEGUIDE METHOD 
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Here A is t h e  wavelength i n  the  empty waveguide, which f o r  t h e  TE 
1 

mode is given by t h e  formula: 

2 -112 
A1 = A,  [ 1  - ho/Ac) 1 (111-35) 

where A = 2a is t h e  cu to f f  wavelength corresponding t o  the  dominant mode 

i n  the  rectangular  guide of width a 

I f  the  sample has a low d i e l e c t r i c  l o s s ,  t h e  r a t i o  r = (Emin/Emax) 

tends t o  zero and equation 111-34 s i m p l i f i e s  to:  

(111-36) 

This equation is solved numerically f o r  @ D  = y by using some of the  

Having found y ,  we ob ta in  t h e  e x i s t i n g  t a b l e s  of the  funct ion t an  y/y 

wavelength i n  the  sample: 

Final ly ,  t h e  real p a r t  of t h e  d i e l e c t r i c  constant  E '  is obtained from 

t h e  r e l a t i o n :  

-112 
A A, [ E '  - (Ao/Ac) 1 (111-37) 

which rep resen t s  t h e  wavelength of t h e  waves propagating t h e  waveguide 

f i l l e d  wi th  t h e  sample (assuming E' '  << c ' )  

The imaginary p a r t  of t h e  d i e l e c t r i c  constant  o r ,  r a t h e r ,  the  t an  fi  = 

E" /€ '  is obtained by equating the  imaginary p a r t s  of equation 111-34, 

assuming aD << 1, which is equivalent  t o  E'' << E '  

manipulation we obtain: 

After  considerable  

ho ( ~ / ~ l ) t a n ( 2 ~ x o / A 1 ) [ 1  + cos 28D + s i n  28Dl A 2 ' I 2  L5-7 (2) A c  1 tan ' 7 (l /rB1)(l  + cos 28D) - 2 D t a n  (2nxo/hl> 

(111-38) 
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where B1 = b / A 1  is t h e  imaginary p a r t  of t h e  propagation constant  i n  

t he  empty waveguide. 

The measured parameter i n  equation 111-38 i s  t h e  r a t i o  r = Emin/Emax, 

which we chose to measure d i r e c t l y ,  by means of a ca l ib ra t ed  p rec i s ion  

a t t enua to r  We found t h i s  method t o  be more accura te  than t h e  o f t en  

used i n d i r e c t  method, based on the  measurement of t h e  width of t h e  stand-  

ing wave curve near  the  minimum 

The values of t a n  6 obtained by t h i s  method must be  corrected f o r  

t he  r e s i s t i v e  l o s s  i n  t he  waveguide, which is  not neg l ig ib l e  i n  s p i t e  of 

t he  gold p l a t i n g  of t h e  i nne r  walls. 

measuring the  r a t i o  r i n  t he  absence of sample. 

tangent ( t a n  6 J i s  then ca l cu l a t ed  from equation 111-38 by pu t t i ng  

D = O , B = B  

This co r r ec t ion  i s  determined by 

An " effec t ive"  loss  

1: 

(111-39) 

and t h e  correc ted  t a n  6 of t h e  sample is obtained as: 

t a n  Gcorr = t a n  6 - t a n  6 (111-40) 

The second method used f o r  measuring t h e  d i e l e c t r i c  constants  makes 

use of t he  d i r e c t  measurement of wavelength and a t t enua t ion  i n  a wave- 

guide f i l l e d  with t h e  sample The method is p a r t i c u l a r l y  s u i t e d  f o r  

powders which can be e a s i l y  f i l l e d  i n t o  t he  s l o t t e d  waveguide 

i n  t he  s l o t t e d  s e c t i o n  is in se r t ed  only f a r  enough t o  "plough" gently 

through the  powder I n  t h i s  case, E '  is obtained d i r e c t l y  from t h e  mea- 

sured value  of A by means of equat ion  111-37. 

sample is calcula ted  from t h e  formula: 

The probe 

The loss  tangent i n  the  

t a n  6 = 
1T EL? 

(111-41) 

where 

t o  the  probe. 

is t h e  length  of t h e  waveguide from t h e  sho r t  c i r c u i t  termination 
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2 Descript ion of Apparatus 

The microwave apparatus  f o r  measurement of d i e l e c t r i c  constants  of 
powders and o the r  materials i n  vacuum is shown schematical ly  i n  Figure 

111-2. 

method descr ibed i n  t h e  preceding sect ion.  

the  v e r t i c a l  p o s i t i o n  so t h a t  t h e  sample res ted  a t  t h e  bottom of t h e  

waveguide by its own weight. 

This apparatus  functioned according t o  t h e  terminated waveguide 

The waveguide w a s  mounted i n  

S t a r t i n g  from t h e  bottom, w e  n o t e  the  ind iv idua l  components of t h e  

microwave system. 

0 900 x 0 400 i n . , i n s i d e  dimensions) appropriate  f o r  the  X-band (3 2 cm 

wavelength). 

c i r c u i t  p l a t e  s i lver- soldered t o  t h e  bottom and an  O-ring gasketed 

f l ange  (choke f lange)  a t  t h e  top The i n s i d e  of the  waveguide is  gold 

p la ted  t o  minimize losses and t o  prevent  oxidat ion of t h e  su r face .  A 

s m a l l  s l o t  mi l l ed  through the  w a l l  of t h e  waveguide provides connection 

t o  a high-vacuum system cons i s t ing  of an 8 liter/sec VacIon pump backed 

by a sorption- type forepump 

A l l  waveguides are of the  s tandard type  (RG 52/U, 

The sample waveguide is 20 inches long, wi th  a s o l i d  shor t-  

The lower end of t h e  waveguide containing t h e  sample may be  maintained 

at any des i red  temperature 

t h e  waveguide i n  a dewar wi th  l i q u i d  n i t rogen  and a t  temperatures up t o  

400'K by heat ing i t  i n  a s m a l l  oven. 

measured the  temperature, which w a s  assumed t o  be equa l  to  t h a t  of the  

sample 

Measurements were made a t  77OK by immersing 

A thermocouple at tached t o  t h e  w a l l  

The sample waveguide is  closed o f f  a g a i n s t  the  atmosphere by a s p e c i a l  

glass-metal window soldered i n t o  t h e  f lange mating wi th  the  upper end 

The window (Type MA-1338, Microwave Associates ,  Inc.) w a s  e spec ia l ly  se- 

l e c t e d  t o  have a minimum r e f l e c t i o n  a t  the operat ing frequency 

standing-wave r a t i o  was less than 1 0 2  a t  9 150 Gcls 

Its 

Immediately above t h e  connecting p i e c e  containing t h e  vacuum window 

This preci-  is t h e  s l o t t e d  waveguide s e c t i o n  wi th  t h e  t r ave l ing  probe. 

s i o n  s l o t t e d  s e c t i o n  (Type 809B, Hewlett-Packard Co.) carries a s c a l e  

permit t ing t h e  determination of the p o s i t i o n  of t h e  standing-wave minima 

and maxima (and thus of x f o r  equat ions 111-38 and 111-39) with a 
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r e p e a t a b i l i t y  of b e t t e r  than 0,Ol cm. The probe itself is an ad jus tab le  

ex tens ion  of a coax i a l  l i n e  pro t ruding  only a few ten ths  of a m i l l i m e t e r  

i n t o  the  waveguide It is i n t e g r a l l y  connected t o  a s i l i c o n  diode detec- 

t o r  which i s  matched by a tunable  s tub .  

cathode-ray osc i l loscope  o r  a standing-wave de t ec to r  (Model B812A, FXR Co.) 

Its output  is measured by a 

The s l o t t e d  s ec t i on  is preceded by a p r ec i s i on  ca l i b r a t ed  a t t enua to r  

(Model 195B, PRD Co ) which is used i n  measuring t h e  r a t i o  r = E 

requi red  f o r  the  determination of t a n  6 For t h i s  purpose the  t r ave l i ng  

probe is se t  t o  a minimum vol tage  and t h e  i nd i ca t i on  of t h e  standing-wave 

de t ec to r  noted,  t h e  probe is then  set t o  t h e  maximum and t h e  a t t enua t i on  

increased u n t i l  t h e  same vol tage  is indica ted  by t h e  standing-wave detec- 

t o r .  The d i f f e r ence  of t h e  two a t t enua to r  readings ( i n  db) g ives  t h e  

r a t i o  r ,  independent of t h e  l i n e a r i t y  and c a l i b r a t i o n  of t h e  standing- 

wave de tec tor .  

/E min max’ 

The frequency of t h e  microwaves is measured by a direct- reading cavi ty  

wavemeter (Model 410A, FXR Go.) fed from t h e  main waveguide by a direc-  

t i o n a l  coupler  (Model X 610A, FXR Co.).  

by a k ly s t ron  (Type VA-58, Varian Assoc ) connected t o  t h e  main l i n e  

through a f e r r i t e  i s o l a t o r  (Model 1203, PRD Co ), which prevents any re- 

f l e c t i o n s  t h a t  might occur i n  t h e  measurement system from inf luencing  t h e  

frequency of t h e  k l y s t r o n ,  

power supply (Model 716A, H-P Co ), which a l s o  provides  a square-wave 

modulation a t  1000 cps 

band (3.2 cm wavelength) system 

The microwave power is supplied 

The k ly s t ron  is supplied from a s t a b i l i z e d  

The components j u s t  described refer to t h e  X- 

The K-band (1 2 cm wavelength) system w a s  e s s e n t i a l l y  i d e n t i c a l  t o  

t h e  one described above; only t h e  components w e r e  d i f f e r e n t .  

Waveguides: 

S lo t t ed  sec t ion:  Model K 102A (FXR Co 1 
Prec i s i on  a t tenuator :  Model K 164F (FXR Co 1 
Wavemeter: Model K 410F (FXR Co ) 

Direc t i ona l  coupler: 

F e r r i t e  i s o l a t o r :  Model K 131  (Cascade Res .  Co 

Klystron:  VA 254 (Varian) 

Power supply: Mod. 716A (H-P Co, 

RG 53/U (0 420 x 0.170 i n  , i n s i d e  dimensions) 

Model K 611C (FXR Co.) 
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For measurements by t h e  sample- fil led waveguide method t h e  same appa- 

r a t u s  were used, only t h e  long sample s ec t ion  was omitted and a shor t-  

c i r c u i t  termination w a s  bol ted  d i r e c t l y  a t  t h e  f lange  o f  t h e  s l o t t e d  

sec t ion .  

w a s  gold p l a t ed  f o r  low loss and good e l e c t r i c a l  contac t .  

set-up w a s  placed ho r i zon ta l ly  on t h e  bench so t h a t  t h e  measuring s e c t i o n  

could be f i l l e d  wi th  powder up t o  t h e  s l o t ,  

from pouring out i n t o  t he  a t t enua to r  and t h e  waveguide by a t i g h t l y  

f i t t i n g  plug of Styrofoam which was tapered a t  t h e  f r o n t  end t o  prevent 

r e f l e c t i o n s  

This te rminat ion  w a s  made of a f l a t ,  heavy b ra s s  p l a t e  which 

The e n t i r e  

The powder w a s  prevented 

3 Sample Materials 

The materials used i n  t he  microwave measurements of d i e l e c t r i c  con- 

s t a n t s  and those  used i n  t h e  thermal conduct iv i ty  measurements described 

i n  Sect ion  I V ,  G were t h e  same: n a t u r a l  pumice, b a s a l t ,  and commercial 

soda-lime g l a s s  The powders w e r e  prepared from n a t u r a l  minerals and 

graded t o  s i z e s  l i s t e d  i n  Table IV-5 (where two s i z e  powders a r e  l i s t e d  

i n  t he  t a b l e ,  t h e  l a r g e r  w a s  used i n  t he  d i e l e c t r i c  constant measurements) 

The n a t u r a l  minerals from which the  powders were prepared were a l s o  mea- 

sured i n  t h e i r  s o l i d  form. 

ves i cu l a r  form but  a l s o  as a s o l i d  g l a s s ,  melted down from t h e  mineral  

Glass beads were a l s o  melted t o  s o l i d  g l a s s  f o r  measurement of t he  di-  

e l e c t r i c  constants ,  

The dens i ty  of s o l i d  samples w a s  determined from t h e  volume of 

rec tangular  blocks and t h e i r  weight The bulk dens i ty  of powdered 

samples, as measured i n  t h e  waveguide, w a s  determined from t h e  height  

t o  which a known weight of powder s e t t l e d  under i t s  own weight. This 

w a s  done i n  a t ransparent  (Plexiglas)  conta iner  of exact ly  t h e  same 

cross  s ec t ion  as t h e  waveguide. 

dens i ty  over a f a i r l y  l a r g e  range and mostly toward values lower than 

the  " natura l ly  packed" densi ty ,  we d i l u t e d  the mineral  powders with poly- 

ethylene  powder. 

ethylene powder and knowing the  amount added t o  t he  sample, w e  could 

der ive  the  d i e l e c t r i c  constant  of t h e  mineral  sample at any des i red  bulk  

The pumicite w a s  measured not only i n  i ts  

Since i t  w a s  d e s i r a b l e  t o  vary the  bulk 

Having determined the  d i e l e c t r i c  constant  E' of poly- 
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densi ty  by using the  mixing formula 111-27. The d i e l e c t r i c  constant  of 

s o l i d  polyethylene w a s  found t o  be E '  = 2.25, and t h e  loss f a c t o r  t a n  6 

was smaller than the  l i m i t  of s e n s i t i v i t y  of our method (approximately 

0.0005) . 
P r i o r  t o  d i e l e c t r i c  measurements, powders were s to red  i n  closed j a r s  

i n  dry  atmosphere, but no p a r t i c u l a r  e f f o r t  was made t o  remove t r a c e s  of 

adsorbed atmospheric water 

pumice, which had a moisture content of approximately 0.5%, gave t h e  

same values  of E '  and t a n  6 (wi thin  l i m i t  of our experimental error) as 

t h e  sample t h a t  was thoroughly outgassed i n  the  evacuated waveguide (16 

hours a t  200°C a t  

We found, however, t h a t  a sample of powdered 

t o r r  pressure)  

4. Resul ts  of Measurements 

The p r inc ipa l  ob jec t ive  of the  microwave measurements of d i e l e c t r i c  

constants  was t o  ob ta in  a cons i s t en t  s e t  of da ta  on t h e  same powders 

which were t h e  sub jec t  of thermal measurements The r e s u l t s  of these  

measurements, performed a t  two wavelengths (3.28 cm and 1 18 cm), a r e  

summarized i n  Tables 111-2, and 111-3. The average experimental e r r o r  

of the  values of E '  and E"  is estimated t o  be approximately 

Powders r e fe r red  t o  i n  Tables 111-2 and 111-3 were l i g h t l y  packed by 

t h e i r  own weight. The bulk d e n s i t i e s  indicated a r e  t y p i c a l  average 

values from many ind iv idua l  determinations P a r t i c l e  s i z e  and composi- 

t i o n  of the  powders w e r e  given i n  the  preceding s e c t i o n  

5% 

I n  order t o  test the  a p p l i c a b i l i f y  of equation 111-27 t o  t h e  powders 

being t e s t e d ,  w e  determined the  d i e l e c t r i c  constant  E '  and l o s s  tangent 

of the  s o l i d  ma te r i a l s  and then ca lcu la t ed  t h e  values appropr ia te  t o  

the  volume f r a c t i o n s  f = ppowder/psolid. 

shown i n  Table 111-4, and r e s u l t s  of ca lcu la t ions  a r e  shown i n  Table 111-5. 

The ca lcu la t ed  values of c 1  were computed from equation 111-27 under 

assumption of k = 0, which is j u s t i f i a b l e  s ince  E" << E '  Under t h i s  

assumption and f o r  a s i n g l e  component, equation 111-27 s impl i f i ed  to: 

Results of t h e  measurements a r e  

" i  

I 

(111-42) 
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TABLE 111-2 

DIELECTRIC CONSTANTS OF POWDERS AT 9.150 Gc/s (Ao = 3.28 cm) 

Sample Temp era t u r  e E' t a n  6 E " 

- - - ("(3 

Glass Beads -196 2.9 0 0077 0.022 

+ 98 2.9 0 0082 0,024 

-196 2 1  0.0042 0 0088 
+ 24 2 1  0 0045 0.0095 
+124 2.0 0 . 0 0 5 1  0 0102 

- 196 2 9  0.0060 0 0172 
+ 24 2 9  0.0067 0 0194 
+ 98 2 8  0.0136 0.0380 

(p @ 1 60 gm/cm3) + 24 2 9  0.0077 0.022 

3 Pumice Powder 
(p Q 0.90 gm/cm ) 

3 Basalt Powder 
(p  % 1.20 gm/cm ) 

d 

1 

1 
1 
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TABLE 111-3 

DIELECTRIC CONSTANTS OF POWDERS AT 25.35 Gc/s (Ao = 1.18 cm) 

Sample Temperature E' t a n  6 E'' 

- - - ("C) 

Glass Beads -196 2 9  0.0075 0 022 
(p '& 1.60 gm/cm3) + 25 2.9 O.CO77 0 023 

+110 2.8 0.010 0 029 

Pumice Powder -196 1 9  0.0060 0.011 
(p Q o 90 gm/cm3) + 25 1.9 0 0070 0.013 

+124 2 .o 0.015 OrO30 

Basalt Powder -196 2.8 0.010 0 028 
(p % 1.20 @/an3) + 25 2.8 0.012 0 033 

+125 2.7 0 030 0,080 
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TABLE 111-4 

DIELECTRIC CONSTANTS OF SOLID MATERIALS AT 9.150 Gc/s 
= 3.28 cm) AND 25’C 

E ’  - Sample 

Glass (melted beads) 

(p % 2.50 gm/cm ) 
3 

pumice (melted pumicite) 
3 

(p % 2 50 gm/cm ) 

Basalt ( s o l i d  mineral)  
3 

(p @ 2.78 p / c m  ) 

6.5 0.013 

5 .4  

8 6  

37 

0.0072 

0.014 

E ” 

0.085 

- 

0.039 

0,12 
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TABLE 111-5 

DIELECTRIC CONSTANTS OF POWDERS CALCULATED AND MEASURED 
AT 9.150 Gc/s AND 25°C 

E'  tan 6 
Calculated Observed Calculated Observed Sample 

Glass Beads 2.7 2.9 0.0072 0.0077 
(f = 0.57) 

I 

Pumice Powder 1.8 2,l 0.0025 0 ,0045 
(f  = 0.36) 

Basalt Powder 2 , 7  2.9 0.0062 0 0067 
(f = 0.43)  
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where E '  denotes t h e  d i e l e c t r i c  constant of t h e  s o l i d  

Simi lar ly ,  a s imp l i f i ed  formula was  used f o r  c a l c u l a t i o n  of t he  loss 
tangent : 

t a n  6 = f t an  6 (111-43) 

where 6 s  r e f e r s  t o  t h e  s o l i d .  

With the  exception of pumice powder, t h e  ca lcula ted  values were found 

t o  be i n  agreement wi th  the  measured values  wi th in  t h e  l i m i t s  of our ex- 

perimental  accuracy Encouraged by t h i s  agreement, w e  made add i t i ona l  

measurements of E' with  a two-component system i n  which b a s a l t  powder w a s  

d i l u t ed  with polyethylene powder. 

(Ao = 1,18 cm) and 25OC 
found t o  be 1.6. 

volume f r a c t i o n s  f The r e s u l t s  a r e  shown i n  Table 111-6. The agreement 

between ca lcula ted  and measured values  i s  again  good, with t he  exception 

of one observat ion  (at f = 0,lO) which is i n  e r r o r  f o r  unknown reasons 

These tests w e r e  made a t  25 35 Gc/s 

The d i e l e c t r i c  constant of polyethylene was 

The powders w e r e  mixed volumetr ica l ly  a t  predetermined 

We a l s o  determined the  d i e l e c t r i c  constants of pumice i n  i t s  n a t u r a l  

ves i cu l a r  form. 

dens i ty  of approximately 0.42 gm/cm3 

found t o  have values of E '  = 1.56 and tan  6 @j 0.002; a t  1,18 cm wavelength, 

t h e  values w e r e  E '  = 1.59 and t an  6 = 0 ,008  

The test samples cu t  from the  n a t u r a l  rock had a bulk 

A t  3 28 cm wavelength, pumice w a s  

A t  t h e  suggestion of D r  Klaus Schocken, w e  made a few experiments 

with mineral  powders t o  which a smal l  amount of m e t a l l i c  p a r t i c l e s  w a s  

added 

25'C t he  d i e l e c t r i c  parameters of t he  pure powder were E '  = 1,9 and t an  6 

= 0.0070 With a s m a l l  amount (0 7 w t  %) of i r o n  p a r t i c l e s  added 

(average size 0 . 1  t o  0.5 micron), t he  d i e l e c t r i c  constant  decreased 

s l i g h t l y  t o  E '  = 1 8 0 ,  and t h e  loss tangent increased appreciably t o  

t an  6 = 0,067 

In a measurement with pumice powder a t  1 18 cm wavelength and 
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TABLE 111-6 

DIELECTRIC CONSTANT E '  OF BASALT-POLYETHYLENE POWDER MIXTURES 
AT 25.35 G e l s  (Ao = 1.18 cm) AND 25OC 

€ '  
Calculated Observed Volume Frac t ion  f of Basalt 

-- 2. 80 

2 10 2 16 

1 93 1 89 

1.0 

0 5  

0.33 

0.20 

0.10 

0 

1 79 1 7 2  

1 70 1.54 

-- 1 60 
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5. Discussion and I n t e r p r e t a t i o n  of Results 

Based on the  r e s u l t s  of the  measurements presented i n  the  preceding 

s e c t i o n  w e  can make the  following observations 

The t h r e e  types of s i l i c a t e  materials are character ized  by d i e l e c t r i c  

constants E *  ranging from 5 4 t o  8.6 i n  t he  so l id  state and from 1 9  t o  

2.9 i n  t he  powdered state 

s t a n t  are q u i t e  low ( a  few per cent  of E ' )  

The imaginary p a r t s  E" of t he  d i e l e c t r i c  con- 

D i e l e c t r i c  constant  E' i s  almost independent of temperature from 77'K 

t o  400"K, poss ib ly  dropping s l i g h t l y  at  t h e  upper temperature l i m i t  

Also, i t  i s  almost i nva r i an t  with wavelength from 1 18 cm t o  3 28 cm. 

The imaginary p a r t s  E"  of one d i e l e c t r i c  constant i nc rease  s l i g h t l y  with 

temperature, p a r t i c u l a r l y  from 25 t o  1 2 5 O C  This i nc rease  is the  l a r g e s t  

i n  b a s a l t  E"  and t a n  6 tend t o  i nc rease  as wavelength decreases but f a r  

less than propor t ionate ly .  

Both E' and E" increase  wi th  dens i ty  of the  powder, and t h e i r  changes 

wi th  t h e  volume f r a c t i o n  of t h e  s o l i d  appear t o  be expressed with s u f f i  

c i e n t  accuracy by the  t h e o r e t i c a l  formulas 

Penet ra t ion  depths of microwaves ca l cu l a t ed  by equation 111-24 from 

d a t a  presented i n  Tables 111-2, - 3 ,  and - 4 are summarized i n  Table 111-7 

Pene t r a t ion  depths are seen t o  i nc rease  wi th  increas ing wavelength The 

increase  is  f a r  more than propor t ional  t o  t h e  i nc rease  i n  wavelength 

The pene t r a t i on  depth is  markedly decreased when a s m a l l  amount of i r o n  

p a r t i c l e s  is added t o  t he  pumice powder. 

d 
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TABLE 111-7 

PENETRATION DEPTH IN MINERALS AND POWDERS AT 25'C 

Mater ia l  

Basa l t ,  s o l i d  minera l  
3 

(p 2.78 gm/cm ) 

Basalt, powder 
3 (P = 1.20 gm/cm ) 

Pumice, melted s o l i d  

(P = 2.50 gm/cm ) 3 

Pumice, powder 
3 (P = 0.90 gm/cm ) 

Pumice, powder 

(with 0 .7  w t  % i r o n  p a r t i c l e s )  

Penet ra t ion  Depth Lr 
a t  A = 3.28 - at  ho = 1.18 cm 

0- - 
26 -- 

92 

62 

159 

19 

4.1 
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I V  THERMAL PROPERTIES 

A REVIEW OF EXISTING DATA 

I n  t h i s  s ec t ion  we w i l l  review b r i e f l y  pe r t i nen t  s t u d i e s  of t h e  

thermal conduct iv i ty  of non-metallic ma te r i a l s  and t h e  i n t e r p r e t a t i o n  

of lunar  i n f r a red  measurements which have been repor ted  s ince  our l a s t  

r epo r t  (Wechsler and Glaser, 1964) W e  w i l l  not  examine these r e f e r-  

ences i n  g r e a t  d e t a i l  but  w i l l  poin t  out areas which w i l l  be discussed 

i n  subsequent s ec t ions  of t h i s  r epo r t  and have s ign i f i cance  t o  our 

experimental and a n a l y t i c a l  work, 

1 

During t h e  pas t  s eve ra l  years ,  t he re  has been a cont inuat ion  of ob- 

Observational Data and Their  I m p l i c a u  

se rva t iona l  measurements of i n f r a red  and microwave temperatures of t h e  

moon during ec l ip ses  and luna t ions  Host of t hese  s t u d i e s  have been di-  

rec ted  a t  i nves t iga t ing  thermal anomalies which cha rac t e r i ze  predominant 

surface  f e a t u r e s  (ray c r a t e r s ,  highlands,  maria, etc 1, e . g  , Saa r i  and 

S h o r t h i l l  (1963) These s t u d i e s  have s u b s t a n t i a l l y  increased our under- 

standing of t h e  na tu re  of t hese  su r f ace  f ea tu re s  In add i t i on ,  severa l  

o the r  i nves t iga t ions  were ca r r i ed  out by both Russian and American workers 

The p r i n c i p a l  theme of t h e  Russian work i s  summarized i n  s eve ra l  

papers 

i n  Washington i n  1962, T r o i t s k i i  (1962a) presents  some r e s u l t s  about t h e  

nature ,  thermal condi t ions ,  and s t r u c t u r e  of t h e  lunar  surface ,  obtained 

from ana lys i s  of l una r  r ad io  emission d a t a  

i n t e r e s t i n g  conclusions based on measurements of t h e  r a t i o  of t h e  con- 

s t a n t  p a r t  of t h e  l una r  r ad io  emission t o  t h e  amplitude of t h e  f i r s t  

harmonic of t h i s  emission 

po in t s  out  t h e  absence of any v i s i b l e  non-uniformities of t h e  surface  

up t o  a depth of s eve ra l  meters 

ca r r i ed  ou t  during 1961 r e su l t ed  i n  t he  following temperatures obtained 

f o r  t h e  constant  component; f o r  wavelengths of 1 6 cm, a mean tempera- 

t u r e  of 208 2 6'K w a s  obtained; a t  a wavelength of 3 2 cm, 2 1 1  * 3'K w a s  

I n  a r epo r t  t o  t h e  In t e rna t iona l  Space Science Symposium held 

T r o i t s k i i  makes seve ra l  

The dependence of t h i s  r a t i o  on wavelength 

Measurements of t h e  l una r  r ad io  emission 

i 

J 
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obtained; at a wavelength of 9 6 cm, 218 -f 4'K was obtained, 
basis of calculations of the thermal conditions at the lunar surface and 

measurements of the radio emission at the largest wavelength (9 3 cm), 
Troitskii concludes that the mean spherical emittance of the moon lies 
between 0 93 and 0 97 
lunar surface and comparison of these temperatures with the radio emis- 

sion temperatures and the ratio of the constant component to the ampli- 
tude of the first harmonic show that the thermal parameter y has a value 

of 350 f 75 Using a specific heat of 0 2 cal/gm°C and a density of 0 5 

gm/cm3 obtained from measurements of dielectric constant, Troitskii con- 
cludes that the thermal conductivity of the lunar surface materials is 

(1 5 0 9) x 

surface material must be porous rather than an unconsolidated dust 

On the 

Additional calculations of temperature at the 

cal/cm"C sec Thus, Troitskii concludes that the lunar 

Krotikov and Troitskii (1963a) presented a review of data giving the 
emittance of the moon at centimeter wavelengths 
wave temperatures of the moon, these authors conclude that the reflec- 
tivity of the lunar surface at a wavelength of 3 2 cm is between 0 and 
0.07 and hence the emittance is greater than 0 93 Further analysis 
of the radio temperature measurements leads these authors to conclude that 
the dielectric constant of the surface material lies in the range of 1 1 
to 1 7 and that the density of the surface material must be in the range 
0 2 to 0,89 gm/cm3 
1962 papers by Troitskii 

From data on the micro- 

These values are similar to those reported in the 

In a second paper, Krotikov and Troitskii (1963b) report on the thermal 
conductivity of lunar materials from measurements of lunar radio emission 
This paper and a companion paper by Krotikov and Shchuko (1963) were dis- 

cussed in our previous report (Wechsler and Glaser, 1964) The heat 
balance on the lunar surface during lunation was calculated for homogene- 
ous models of the lunar surface as a function of the thermal parameter Y 
The corrections to the original work by Jaeger were pointed out in our 
previous report 
and Krotikov and Shchuko papers are that the best value of the thermal 
parameter y is 350 2 75 

The conclusions drawn from the Krotikov and Troitskii 

3 This, combined with the value of 0 5 gm/cm 
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f o r  t h e  dens i ty  of lunar  material, gives a thermal conduct iv i ty ,  1 x 

cal/cm"C sec ,  i nd i ca t ive  of a porous ma te r i a l  

Three methods are used t o  ob ta in  t h i s  "best" value  of thermal para- 

meter 

temperature of t h e  lunar  su r f ace  on t h e  thermal parameter Y 

and T r o i t s k i i  show t h a t  t h e r e  is a r e l a t i o n  between t h e  t i m e  averaged tem- 

pe ra tu re  and t h e  thermal parameter which decreases from a value of about 

280°K at  very low values  of t h e  thermal parameter t o  about 220°K a t  va lues  

of gamma of about 1000 Using t h e  microwave measurements of t h e  lunar  

temperature,  t h e  au tho r s  conclude t h a t  t h e  range of thermal parameters 

corresponding t o  a temperature of about 230 t o  236'K is between 250 and 

450 The authors  a l s o  show t h a t  t h e  r a t i o  of t h e  constant component t o  

t h e  f i r s t  harmonic term has a much g rea t e r  dependence on the  thermal 

parameter y 

t o  a value of 1 3  at  y = 1200 From the  measurements of t h i s  r a t i o  of 

approximately 1 5 f 0 1 t h e  range of thermal parameters r e s u l t i n g  is be- 

tween 250 and 550 The t h i r d  r e l a t i o n  t h a t  is used t o  determine Y i s  

t h e  r e l a t i o n  between t h e  luna r  midnight surface  temperature and the  thermal 

parameter 

t h e  same as t h e  dependence of t h e  constant  component on Y 

values  of approximately 125 5"K, t h e  corresponding values  of Y l i e  i n  

t h e  range 300 t o  440,  

pe ra tu re  of perhaps 90°K would ind ica t e  much higher va lues  of Y ,  on the 

order of 1000 

The f i r s t  method relies on t h e  dependence of t h e  t i m e  averaged 

Krotikov 

The value  of t h i s  r a t i o  ranges from about 2 8 a t  Y = 20 

Here t h e  dependence of t he  midnight temperature on Y i s  about 

From measured 

More recent  information on t h e  lunar  midnight t e m-  

Of t h e  t h ree  methods used, t h e  dependence of a constant temperature 

component and a lunar  midnight temperature on Y are absolute  techniques,  

i e , lunar  su r f ace  temperatures a r e  never measured, r a t h e r  energy emitted 

from t h e  moon is measured The t h i r d  technique,  using t h e  r a t i o  of t h e  

constant component t o  t h e  f l u c t u a t i n g  f i r s t  harmonic component, does not 

depend on absolute  measurements. From these  t h r e e  techniques t h e  authors  

conclude t h a t  t h e  value  of t h e  thermal parameter t o  w i th in  20% is 350 

Estimates of t h e  dens i ty  of l una r  surface  materials have been made 

by T r o i t s k i i  (1962b), us ing t h e  following method T r o i t s k i i  assumes t h a t  
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I 

the thermal conductivity of rocks in the form of either foams or par- 
ticulate materials can be expressed as a function of the density of the 
material and the conductivity of the general group of solid materials of 
which the foam or particulate material is constituted 
foamy materials and friable or particulate materials, Troitskii gives the 
following relationships: 

For both porous 

(IV-1) 

kg where subscripts 1 and 7. refer to porous or particulate materials; 
and po refer to the conductivity and density of the material in the non- 
porous state; and p refers to the density of the material in the porous 
state 
varies within the limits of 2 30% from the value of 0 8 for material like 
granite, marble, or basalt; 1 for quartzite; 0 8 for sandstone; and 0 6 

-1 for limestone, (The units in this equation are conductivity in Kcals-m 
degree-'- hour, and p is in t~ns-m-~ ) Although Troitskii indicates that 
the variation of conductivity for various materials under high vacuum has 
not been studied experimentally to a sufficient extent, Zhere are some 
data available upon which tentative conclusions of the dependence of thermal 
conductivity on density may be based For low porosities (up to 20 to 30%), 

Troitskii indicates that the Maxwell formula for thermal conductivity can 
be used, i.e,, k is approximately equal to k / p  times p For large 
porosities (greater than 0.4 or 0 ,5 ) ,  this formula is incorrect On the 
basis of experimental data by Woodside and Messmer (19611, Troitskii de- 
rives the following formulas: 

Troitskii concludes that for almost all rocks the ratio ko/po 

- 
-1 

1 0 0  

k = a  1p k7. = a2 p ,  0 < p < 1.5 (IV-2) 

where a1 and a2 are much less than ko/pOq 
in the density interval from 0 to 1.5 g/cm3 
frothy materials in air and data which indicate that the conductivity de- 
creases by a factor of three from air to vacuum, Troitskii concludes 
that the conductivity of foamy materials is given by the equation: 

This expression should be valid 
From experimental data on 
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k = 2 x p (0 2 < p < 1 , 5 )  IIV-3) 1 

-1 where thermal conductivity is in the units of cal cm-I sec 
P is in g/cm 
the form given by the following equation: 

degree-' and 
For particulate materials, the thermal conductivity has 

k2 = 5 x p (0 2 < p < 1 5) ( I V - 4 )  

Using these relationships between conductivity and density, one can then 
determine the density of lunar materials from measured (or deduced) 
values of the thermal parameter Y (Y = (kpc) -'I2) 
by the formula 

The density is given 

p .  = ( 0 . 2  < p  < l . 5 )  
= rx4or.c 

(IV- 5) 

i 

Substituting the values for a derived from the measurements of Woodside 
and Messmer, Troitskii concludes that p = 160/y for a porous frothy mate- 
rial and p = 320/v for a friable or particulate material (in these equa- 
tions y has cgs units) 

Based upon measurements of the thermal parameter Y by Krotikov and 
Troitskii (1963b), the density of the lunar material is 0 4 2 0 1 g/cm 
for porous material or 0 9 0 2 g/cm for particulate material Troit- 
skii concludes that the lower density values correspond better to those 
obtained from electrical parameters and, therefore, the lunar surface is 
more probably a porous foamy material 
for determination of density is dependent on a rather inaccurate knowledge 
of the thermal conductivity of material in vacuum and suggests additional 
studies of the relationship of conductivity and density under vacuum 
conditions The behavior of conductivity as a function of density and 
material type has been the subject of a number of investigators. however, 
little information is available for studies conducted under high vacuum. 
Later in this report we will examine our experimental data to determine 
if the relationships between thermal conductivity on density used by 

3 

Troitskii admits that this method 
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T r o i t s k i i  a r e  subs t an t i a t ed  by our experimental measurements. 

The thermal emission i n  the  in f r a red  region of the  spectrum fo r  

var ious  regions of the  lunar  surface  were examined by Markov and Khokh- 

lova,  who measured t h e  r a d i a t i o n  emission from the  lunar  surface  i n  two 

atmospheric "windows" a t  8 t o  1 3  microns and 3 6 microns during the  

lunar ec l ip se  of August 7 ,  1963, and during the  month of July ,  1963 

The resolving power of the  instrument was about 100 km on the  surface  

of t h e  moon and w a s  t hus  s u f f i c i e n t l y  high f o r  r e l i a b l e  separa t ion  

of the  maria and con t inen ta l  lunar  areas  The authors conclude t h a t  

is from 0 , 8 3  (maria) t o  0 62 3 6 microns t h e  v a r i a t i o n  i n  emittance E 

(cont inent)  

gray body r ad ia to r  ( i  e , no v a r i a t i o n  i n  emittance with wavelength), in-  

d iv idua l  s ec t ions  on the  moon show some small  v a r i a t i o n  i n  in f r a red  e m i t -  

tance It should be noted t h a t  these  va lues  of emittance a r e  genera l ly  

lower than those assumed f o r  a lunar  su r f ace  ma te r i a l  i n  the  in f r a red  

region 

and Khokhlova conclude t h a t  t h e  measured d i f ferences  i n  r a d i a t i v e  f l u x  

from t h e  con t inen ta l  and maria regions of the  moon can be ascribed t o  

both v a r i a t i o n s  i n  emittance of the  moon and v a r i a t i o n  i n  the  thermal 

parameter (kpc) -'" Based on an average value of Y of 600 (cgs u n i t s ) ,  

t h e  observed d i f f e rence  i n  r a d i a t i v e  f l u x  from t h e  maria and con t inen ta l  

areas  corresponds t o  a 20% v a r i a t i o n  i n  y Thus, Y might vary from 480 

t o  720, with a corresponding 40% v a r i a t i o n  i n  thermal conductivity and 

dens i ty  

Although the  moon can be considered t o  be approximately a 

From measurements of the  unil lwninated p a r t  of t h e  moon, Markov 

The p r i n c i p a l  e f f o r t s  of American and western inves t iga to r s  i n  

t h e  i n t e r p r e t a t i o n  of l una r  observat ional  da ta  involve t h e  examination of 

lunar surface  models i n  which (1) t h e  thermal p rope r t i e s  vary w i t h  tem- 

pera ture ,  (2) thermal p rope r t i e s  vary with depth, and (3) t h e  surface  

ma te r i a l  is not  homogeneous 

The e f f e c t s  of v a r i a t i o n  of thermal p rope r t i e s  with temperature were 

f i r s t  considered by Muncey (1962), who assumed t h a t  both thermal conduc- 

t i v i t y  and s p e c i f i c  heat  were propor t ional  t o  t h e  absolute  temperature 

These assumptions were based upon the  d a t a  of Scot t  (1957), which indica ted  

I 

I 



that the thermal conductivity of evacuated perlite was directly propor- 
tional to temperature, and evidence that the specific heat of materials 

such as Fe304, CaC03, and A12Si0 
Muncey concludes that the observed behavior of lunar temperatures during 

a lunation and an eclipse can be reproduced very closely by models which 
consist of a dust layer with a thermal parameter of 1500 at 350°K over- 
lying rock or gravel He also concludes that if the lower substratum 
were rock with a thermal parameter of 20 at 350”K, up to 80% of the sur- 
face might be covered with deep dust 

was directly proportional to temperature 5 

More extensive studies of the effects of variation in thermal proper- 
ties with temperature have been carried out by Watson (19641, Chiang 
(1965), and Linsky (1966) Watson examines the eclipse data of Pettit 
and Nicholson (1930) and Murray and Wildey (1963) using models in which 
the thermal conductivity and specific heat are either constant or vary 
with temperature The variation of specific heat with temperature was 
obtained by least squares quadratic fit to data on quartz and quartz 
glass (Birch, 1942) The variation of conductivity with temperature had 
the form: 

(IV-6) 3 k = B + A T  

with the constants evaluated by experimental measurements with glass 
beads Watson concludes that: (1) the eclipse data of Pettit and Nich- 
olson may be explained on the basis of models with thermal properties 
independent of temperature, depth, and lateral variation; ( 2 )  the ec- 
lipse data of Murray and Wildey cannot be explained using a constant 
property model or a model in which the material is homogeneous but with 
thermal properties which vary as indicated above. and (3) no simple model 
can explain all the eclipse data 

Chiang has considered several homogeneous and non-homogeneous models 
and compared the resultant calculations with the data of Pettit The 
homogeneous models include: 

112 (1) Constant thermal inertia (kpc) , 
(2) Thermal inertia, (kpc)l”’, linear dependent on temperature 

49 



I 

(i e , k and c a r e  l i n e a r  dependent on temperature) 

Thermal inert ia propor t iona l  t o  t h e  square of temperature 

( i t e . ,  k is  propor t iona l  t o  T 

temperature) 

A combination of models 1 and 2, 

A combination of models 1, 2 ,  and 3 

(3) 
3 and c is propor t iona l  t o  

( 4 )  

(5) 

Each of these  models f a i l s  t o  m e e t  t h e  emphasis i n  t h e  umbral phase of 

Chiang then considers  t h e  e c l i p s e  of reaching the  observed cooling rate 

non-homogeneous models, s i m i l a r  t o  Fremlin (1959), i n  which materials of 

two types,  a porous material and base rock, a r e  d i s t r i b u t e d  over t h e  

lunar  sur face  

porous material is propor t iona l  t o  T1 

e n t  of temperature and t h a t  k is  proport ional  t o  T3 >or t h a t  the thermal 

i n e r t i a  is propor t iona l  t o  T2 Cine., c is propor t iona l  t o  T and k is 

propor t iona l  t o  T ) 

ca lcu la t ions  is obtained with approximately 3% base rock d i s t r i b u t e d  over 

t h e  sur face  

material is  between 69 and 93%, the  maximum p a r t i c l e  s i z e  is  i n  the  range 

from 0 4 t o  2 mm, and t h a t  t h e  thickness of the  porous sur face  i s  between 

1 and 5 cm. 

base rock) i s  i n  the  range from 2 25 x 

dens i ty  of 0 89 gm/cm3 t o  1 0 x 

0 . 2 0  gm/cm3 

p a r t i c u l a t e  i n  na ture  than a s o l i d  with interconnect ing pores 

c lus ions  are i n  s u b s t a n t i a l  agreement w i t h  recent  Surveyor d a t a  

Chiang assumes t h a t  e i t h e r  the  thermal inertia of the  

( i . e  , t h a t  p and c are independ- 

3 Excellent  agreement between observa t iona l  d a t a  and 

Chiang f u r t h e r  concludes t h a t  t h e  poros i ty  of t h e  sur face  

The e f f e c t i v e  conductivi ty o f  the  sur face  material (not the  

T3 ( c a l / s e c  cm"C> f o r  a dens i ty  of 

T3 ( c a l / s e c  cm°C) f o r  a 

Chiang a l s o  concludes t h a t  the  porous material i s  more l i k e l y  

These con- 

Linsky (1966) considers  t h r e e  d i f f e r e n t  models f o r  lunar  sur face  

materials : 
(1)Temperature independent thermal p roper t ies ,  

(2)Radiat ive thermal conductivi ty (k = kc + ~ E U T  S) s p e c i f i c  

(3)Power l a w  approximation t o  thermal p roper t ies  ( i  e , ,  k = koTa 

3 

heat  a func t ion  of temperature (C = COT >, and 

and C = COT 1. 

b 

b 

? 

I 

I 

i 
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Linsky a l s o  has  d i f f i c u l t y  i n  i n t e r p r e t i n g  t h e  e c l i p s e  da t a  of Murray and 

Wildey (1964) and uses t h e  minimum temperature reached during t h e  lunar  

n igh t  f o r  comparison of t h e  d i f f e r e n t  models Because only t h e  minimum 

temperature is  used, each model s a t i s f j e s  t h e  minimum temperature but  

y i e l d s  d i f f e r e n t  va lues  of kpc and R ( t h e  r a t i o  of r a d i a t i v e  t o  conduc- 

t i v e  f l ux )  

of P e t t i t  (1940) is  not  exac t ly  reproduced by any of t h e  models consid- 

ered  Linsky analyzes t h e  assumptions and conclusions made by Krotikov 

and T r o i t s k i i  (1963b) and concludes t h a t  t h e  value of 350 f 20% given f o r  

t h e  thermal parameter i s  based upon dubious in f r a red  measurements, an 

absolute  r ad io  br ightness  temperature f o r  which small e r r o r s  g r e a t l y  

a f f e c t  t h e  conclusions,  and an ex t r apo la t ion  procedure t h a t  g ives  ambiguous 

r e s u l t s  In comparing microwave observat ional  d a t a  with t h e  temperatures 

ca lcula ted  us ing t h e  var ious  lunar  models, Linsky concludes t h a t  a l l  of 

t h e  e igh t  models used are i n  agreement with t he  r ad io  d a t a  a t  high angular 

r e so lu t ion  but t h a t  t h e  models including s i g n i f i c a n t  r a d i a t i v e  energy 

t r a n s f e r  during lunar  daytime are t h e  most p l aus ib l e  

meters used and corresponding conduc t iv i t i e s  are given in Table I V- 1  

As may be  expected from t h e  work of Chiang, t h e  e c l i p s e  da t a  

The thermal para- 

Some of t h e  values  of conduct iv i ty  w i l l  be compared t o  our da t a  and 

other  d a t a  later These values  represent  t he  range of conductivitylden- 

s i t y  r a t i o s  which a r e  i n  agreement with observat ional  d a t a  

i f  t h e  thermal p rope r t i e s  a r e  temperature dependent, t h e  most l i k e l y  values  

of t h e  thermal parameter are i n  t h e  range of 625-885 r a t h e r  than i n  t h e  

range of 280 t o  420 given by t h e  Russian inves t iga to r s  

W e  note  t h a t  

Other ca l cu l a t ions  of l una r  surface  temperatures based upon tempera- 

t u r e  dependent thermal p rope r t i e s  have been made by Hala j ian  and Richman 

(1965) and Winter (1965) Halajian p laces  p r inc ipa l  emphasis upon cor- 

r e l a t i n g  mechanical and thermal p rope r t i e s  and r e l a t i n g  these  t o  lunar  

surface  materials. Radiative and combined r a d i a t i v e  and conductive 

heat  t r a n s f e r  i n  p a r t i c u l a t e  and ves i cu l a r  ma te r i a l s  are being considered 

Winter emphasizes examination of t h e  cooling behavior of s o l i d s  contain- 

ing pe r iod ica l ly  spaced deep c a v i t i e s  

considerable  d i f f e r ence  i n  cooling c h a r a c t e r i s t i c s  of homogeneous s o l i d s  

The r e s u l t s  show t h a t  t he re  is 
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Table IV-1 

1 

2 

3 0,16 

4 0.25 
5 0 32 
6 0 27 
7 

8 

THERMAL PARAMETERS AND CORRESPONDING 
CONDUCTIVITIES FOR VARIOUS LUNAR MODELS 

* Ratio of 
Y~~~ R350, a, b Conductivity/Density (kc/p or ko/p) 

2 (cgs units) (cal cm /"C sec pm) 

107 5 4 33 x 
1075, 250 for x > 30 cm 4 33 x 10-6/3 46 x lo-' 
885, R = 1, b = 0 3 20 x 
810, R = 2, b = 0 2 55 x 
750, R = 3, b = 0 2,22 x 

670, R = 1, b = 1 5 54 x 
850, a = 1, b = 0 1 99 x 
625, a = 1, b = 1 3 63 x 

. -- 
* R is the ratio of radiative to conductive heat flux at 350"K, and 

S is the particle spacing in the radiative model 

I 

I 
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and materials with parallel wall cavities 
explain some of the anomalies in lunar temperature data 

These differences could 

2 Analytical Studies 

A review of the mechanisms of heat transfer in porous and particu- 
late materials and the analyses which form the basis for our present 
knowledge of radiation and conduction in non-metallic materials was 
given in our previous report (Wechsler, et a1 , 1963) In the interval 
since this report, few basic analytical investigations of the mechan- 
isms of heat transfer in particulate or  porous materials have been re- 
ported in the literature We will briefly review those which are per- 
t inent 

A critical review of the theoretical equations for predicting the 
thermal conductivity of mixtures, with particular reference to powders, 
is given by Godbee and Ziegler (1966) These authors derive a new ex- 
pression for the effective conductivity of powders in which the effec- 
tive conductivity is equal to the sum of the contributions of solid con- 
duction only, gas conduction and solid conduction in series and parallel, 
and radiation. The solid conduction contribution is assumed to be neg- 
ligible for the authors' investigation (the study of magnesia, alumina, 
and zirconia powders at elevated temperatures) 
tion is given as: 

The radiative contribu- 

( IV-7)  3 k = 4 n o E (l/Vd - 1) DsT 

where n is the index of refraction. u is the Stefan-Boltzman constant. 
E is the emittance: Vd is the volume fraction of the dispersed phase: 
D is the particle diameter: and T is the absolute temperature This 
radiative contribution is similar to that used by many investigators 
The equations derived for the gas-solid series and parallel conduction 
were derived using kinetic theory and a simplified model of a well mixed 
heterogeneous powder in which the isotherms are planes perpendicular to 

heat flow< The results of the experimental studies confirm the equations 
derived over a wide range of temperatures However, measurements were 
not made in vacuum or at low temperatures 
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Butt (1965) i n  a s tudy of thermal conduct ivi ty  of porous c a t a l y s t s  was 

concerned wi th  t h e  apparent thermal conduct ivi ty  of t h e  s o l i d  phase mate- 

r i a l .  H e  proposes the  use of t h e  following equation o r i g i n a l l y  developed 

by Wilhelm, e t  a 1  (1948) : 

k 

P 
I 5  

loglo (ks 10 ) = 0,859 + 3 12  (IV-8) 

I 

kS 
where k 

i s  t h e  thermal conduct ivi ty  of t h e  bulk s o l i d ,  and p '  is  the  poros i ty  of 

t h e  microporous p a r t i c l e s  considered (Note t h a t  equation (IV-8) i s  dimen- 

s i o n a l ,  i . e < ,  k is i n  u n i t s  of c a l f s e c  cm"C,) The equation is based upon 

measurements i n  packed beds with p o r o s i t i e s  of 0.18 t o  0 52 

t i o n  is  not s u i t a b l e  f o r  d i r e c t  c o r r e l a t i o n  with t h e  s i l v e r  c a t a l y s t  f o r  

which t h e  v a r i a t i o n  of conduct ivi ty  with gas pressure  was ava i l ab le ,  

some modif icat ions  Butt  could c o r r e l a t e  conductivity versus pressure  data  

f o r  alumina and s i l v e r  c a t a l y s t  p e l l e t s  

i s  the  contr ibut ion t o  conduct ivi ty  through t h e  s o l i d  phase, 

I 

The equa- 

With 

I n  an examination of h e a t  t r a n s f e r  i n  non-evacuated cryogenic insula-  

t i o n s ,  Johnson and Hollweger (1965) i n d i c a t e  t h a t  a l a r g e  por t ion of t h e  

hea t  t r ans fe r red  i n  gas f i l l e d  powders occurs i n  t h e  adsorbed gas f i lm on 

t h e  p a r t i c l e  su r faces  a s  we l l  a s  across  p a r t i c l e  contacts  These authors  

a l s o  i n d i c a t e  t h a t  i n  many powdered ma te r i a l s  extensive  r e l axa t ion  occurs 

during sample f a b r i c a t i o n  so  t h a t  equat ions  i n  which powder packing loads 

a r e  used may not  be v a l i d  

I n  h i s  s tudy of thermal conduct ivi ty  of s i l i c a t e  powders i n  vacuum, 

Watson (1964) considers  t h e  model i n  which t h e  e f f e c t i v e  thermal conduc- 

t i v i t y  is represented as :  

keff = AT3 + B (IV-9) 

where A and B a r e  numerical constants  dependent upon t h e  p a r t i c u l a r  powder 

and may be evaluated by experiment 

conduction" and is  derived i n  t h e  usual  manner, assuming the  sample 

opaci ty  is independent of wavelength and t h e  o p t i c a l  depth of a sample 

is l a r g e .  

The f i r s t  term represen t s  a " rad ia t ive  

The e f f e c t s  of s c a t t e r i n g  a r e  neglected but can be considered 

I 
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as equivalent t o  an absorpt ion  process i f  t h e  s c a t t e r i n g  is i s o t r o p i c  

The use  of equation IV-9 ind ica t e s  t h a t  t h e  s o l l d  conduction term is 

temperature independent Watson ind ica t e s  t h a t  t h i s  may not  neces sa r i l y  

be  the  case,  bu t  t h a t  t h e  o the r  unce r t a in t i e s  i n  contac t  conduction make 

rigorous analyses  of t h e  e f f e c t s  of temperature on s o l i d  conduct iv i ty  

unwarranted 

Watson a l s o  analyzes the  contac t  conduction i n  a bed of uniform s i z e  

For g l a s s  spheres wi th  a Poisson 's  and Young's modulus of 0 .18  spheres 

and 7 x 10l1 dynes/cm , r e spec t ive ly ,  t he  r a t i o  of t h e  s o l i d  conduction 

i n  a powder bed t o  t he  bulk phase s o l i d  conduction i s  given by t h e  formula: 

2 

I 

i=l 

(IV-lo) 

where L is the  depth of t he  bed, and b is t h e  p a r t i c l e  radius  The suma- 

t i o n  takes  i n t o  account t he  v a r i a t i o n  i n  loading between t h e  spheres a t  

d i f f e r e n t  he igh t s  i n  t h e  bed 

r e s u l t s  f o r  t h e  s o l i d  conduction i n  t h e  bed 

Table 1V-2 presents  Watson's numerical 

The r e s u l t s  given above ( f o r  pe r f ec t  welded contac t  between t h e  g ra ins  

across  t h e  contac t  a rea)  i nd i ca t e  t h a t  t h e  s o l i d  conduction contr ibut ion  

i s  i n s e n s i t i v e  t o  g ra in  s i z e  The experimental r e s u l t s ,  discussed later,  

i nd i ca t e  t h a t  t h e  contac t  conduction f o r  g l a s s  spheres decreases a s  t he  

p a r t i c l e  s i z e  increases,and Watson concludes t h a t  t h e  thermal contact  may 

be  unre la ted  t o  t he  e l a s t i c  contac t  

tact surfaces  and presence of t h i n  su r f ace  f i lms may cause departures 

from the  "welded contact"  model 

3 Laboratory Measurements 

There have been 'few measurements of evacuated powders or porous 

materials repor ted  i n  t h e  l i t e r a t u r e  which are pe r t i nen t  t o  t he  present  

program. 

Glaser, 1964),measurements using ceramic powders and porous c a t a l y s t s  have 

been ca r r i ed  out but  no t  at  s i g n i f i c a n t l y  low pressures  

The microscopic roughness of t h e  con- 

I n  add i t i on  t o  those discussed i n  our las t  r epo r t  (Wechsler and 
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TABLE IV- 2 

SOLID CONTRIBUTION TO POWDER CONDUCTIVITY (watt/cm°C) 

L = 0 .5  cm L = 1.0 cm P a r t i c l e  S i z e  L = 0.2 cm 

(microns) 

1000 8 , 9  x 10.7 x 12.8 x 

200 7 5 x 9.7 x 11.9 x 

100 7 2 x 9 . 4  x 11.7 x 

50 7 0 x 9.3 x 11 6 x 

Source: Watson (1964) 
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For example, t h e  work of Mischke and Smith (1962) on alumina c a t a l y s t  

p e l l e t s  w a s  c a r r i e d  out a t  10 t o  25 microns; va lues  of conduct iv i ty  w e r e  

almost an order  of magnitude g rea t e r  than those repor ted  f o r  evacuated 

powders i n  our s t u d i e s  

s tud ied  by Masamune and Smith (1963a) were on the  order  of w a t t / c m ° C  

at  lo-' t o r r  The p e l l e t s  were q u i t e  l a rge  and t h e  conduct iv i ty  value is 

not r ep re sen ta t ive  of a powder ma te r i a l  but  a pressed o r  s i n t e r e d  agglomera- 

t i o n  of p a r t i c l e s  

Simi lar ly  t he  conduct iv i ty  of t h e  c a t a l y s t  p e l l e t s  

The conduct iv i ty  values given by Masamune and Smith (1963b) f o r  g l a s s  

beads were discussed i n  our previous r epo r t  The conduct iv i ty  
values obtained a t  low pressures  a r e  on the  order of 5 x 10 watt/cm°C, 

an order of magnitude h igher  than those obtained both i n  our work and i n  

t h a t  of Watson 

-4 

The most useful  and extens ive  da t a  are those obtained by Watson on 

s i l i c a  g l a s s  microbeads, qua r t z ,  o l i v ine  and hornblende powders The 

s i z e ,  dens i ty  range, and contr ibut ions  t o  thermal conduct iv i ty  

(given by A and B i n  equation IV-9) are shown i n  Table IV-3 

Severa l  i n t e r e s t i n g  observations may be made from these  da t a .  

g l a s s  beads, t he  r a d i a t i v e  t e r m  i s  inve r se ly  propor t ional  t o  t h e  

p a r t i c l e  s i z e  down t o  about 50~1.  This sugges ts  two poss ib le  causes: 

(1) an increased opaci ty  with decreasing g ra in  s i z e  due t o  r ad i a t ive  
t r anspor t  between g ra ins  and (2) f o r  small grain  sizes,  thecombined 

e f f e c t s  of r ad i a t ion  between and through the  g ra ins  

effect of composition on s o l i d  conduction o r  r a d i a t i v e  contr ibut ions  I n  

Watson's experimental  method, t he  dens i ty  value w a s  obtained from weight 

and sample height  measurements, t h e  la t ter  being d i f f i c u l t  t o  make, 

Watson did  not  at tempt t o  c o r r e l a t e  t h e  r e l a t i v e  contr ibut ions  with den- 

s i t y  because of t he  unce r t a in t i e s  i n  measurements For most of t he  mate- 

rials s tudied ,  t he re  appears t o  be  an increas ing r a d i a t i v e  contr ibut ion  

with increas ing dens i ty  and a decreasing conduction contr ibut ion  with in-  

creas ing dens i ty  

it can be  seen t h a t  t he  r e l a t i v e  magnitude of t h e  r a d i a t i v e  t o  conductive 

contr ibut ions  a t  300°K va r i e s  from about 3 f o r  s m a l l  g l a s s  beads t o  over 

30 f o r  300 micron beads For o the r  ma te r i a l s  t h e  r a d i a t i v e  t o  conductive 

For 

There is no apparent 

This v a r i a t i o n  is  no t  e a s i l y  explained. From Table IV-3 

f 
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contr ibut ions  range from about 0 3 t o  3 5 
used by Linsky i n  h i s  analyses  of lunar  temperatures,  

compared t o  Watson’s d a t a  i n  subsequent s ec t ions  of t h i s  r epo r t  

B. THEORETICAL CONSIDERATIONS 

These values a r e  i n  the  range 

Our d a t a  w i l l  be 

For p a r t i c u l a t e  and porous ma te r i a l s  i n  a simulated lunar  environ- 

ment, s o l i d  conduction and thermal r ad i a t ion  are t h e  only important con- 

t r i b u t i o n s  t o  thermal conductivity.  In our s t u d i e s ,  t he  e f f e c t s  of gas 

conduction a r e  eliminated by opera t ion  i n  high vacuum 

1 Sol id  Conduction Contribution t o  E f fec t ive  Thermal Conductivity 

Sol id  conduction i n  powders can be examined i n  terms of two conduction 

paths:  (1) conduction wi th in  t he  s o l i d  comprising the  p a r t i c l e s  and 

(2) conduction across  po in t s  of contac t  between t h e  powder gra ins  

o r i e s  of thermal conduction i n  s o l i d s  have been described by seve ra l  

i nves t iga to r s  ( e  g , Drabble and Goldsmid, 1961) A s u b s t a n t i a l  amount 

of da ta  is ava i l ab l e  i n  t h e  l i t e r a t u r e  on t h e  thermal conduct iv i ty  of 

non-metallic materials, p a r t i c u l a r l y  g l a s se s ,  s i n g l e  c r y s t a l s ,  and poly- 

c r y s t a l l i n e  s o l i d s .  Conduction i n  s o l i d s  is  genera l ly  a t t r i b u t e d  t o  

s eve ra l  mechanisms: (I) phonon t r anspor t  o r  l a t t i c e  v ib ra t ions  and 

(2) f r e e  e l e c t r o n  conduction. L a t t i c e  v ib ra t ions  are t h e  important pro- 

cesses i n  d i e l e c t r i c s  where t h e  thermal conductivity is  l imi ted  by phonon 

s c a t t e r i n g  (normal and umklapp processes) and boundary and impurity 

s c a t t e r i n g  I n  amorphous s o l i d s  “boundary sca t t e r ing”  predominates; i n  

a c r y s t a l l i n e  material phonon s c a t t e r i n g  by umklapp processes or impuri- 

ties predominates 

i n  metals 

The- 

Free e l ec t ron  conduction is t h e  more important process 

The e f f e c t  of temperature on the  thermal conduct iv i ty  of s o l i d s  de- 

pends upon the  type of material as we l l  as the  temperature range,  

ing t o  classical theory,  t he  la t t ice  conduct iv i ty  of a pure c r y s t a l  w i l l  

be propor t ional  t o  1 / T  at high temperatures (above the  Debye temperature) 

A s  t he  temperature is  lowered below the  Debye temperature t h e  l a t t i c e  

conductivity i nc reases  r ap id ly ,  reaches a maximum, and decreases with a 

dependence on T3 near absolute  zero 

modify these  genera l  r u l e s  

Accord- 

The e f f e c t s  of impur i t ies  w i l l  

1 

1 
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In many glasses, it is not possible to separate the radiative and 
conductive components of heat transfer when making thermal conductivity 

measurements, and effective conductivity data are used. 
shows the effects of temperature on the thermal conductivity of several 

glasses It can be seen that the crystalline materials show a decrease 
in thermal conductivity with temperature, whereas the conductivity of 
amorphous materials tends to increase in the temperature region between 
100 and 400°K, 

trends shown in the figure. 
and the state of crystallinity, it should be possible to evaluate or mea- 
sure the conduction heat transfer within the solid 

Figure Iv-1 

The thermal conductivity of other glasses follows the 
Given the type and composition of the glass 

The phenomenon of conduction heat transfer across areas of contact be- 

tween particles is more difficult to analyze 
ductance will depend upon the properties of the solid and the size and 
nature of the contact areas 
upon the elastic properties of the material, the size, shape, and geometrical 
arrangement of the particles, and the forces between the particles, 
addition, physically or chemically adsorbed gases on particle surfaces may 
change the contact resistance. In the lunar environment, for example, the 
lower gravitational force, absence of physically adsorbed gases, possible 
sintering and aggregation of dendritic structures caused by solar 
radiation or meteorite infall may have a strong influence on conduction 
across contact areas 

The effective thermal con- 

The size o f  the contact area is dependent 

In 

\ 

Many empirical and semi-theoretical expressions have been described 
for evaluating the contribution of solid conduction to thermal conductivity. 
The independent parameters often used in characterizing the conduction are: 

true thermal conductivity of the solid, porosity of the media, particle 
radius, elastic modulus, particle shape factors, applied loading factors 
and others 
thermal conductivity of a heterogeneous material to these parameters was 
given in our previous studies (Wechsler, et al., 1963) 
empirical relationships has been shown to be valid for a wide range of 

porosities, particle sizes, and material types, especially for fine particles 

A review of many relationships used in relating the effective 

None of these 
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For foamed mate r i a l s ,  where t h e  s o l i d  conduction is l a r g e ,  agreement 

between experimental d a t a  and seve ra l  empir ical  expressions i s  adequate 

(Loeb, 1954; Kunii and Smith, 1960) 

The work of Watson (1964) i n  de r iv ing  an expression f o r  s o l i d  conduc- 

t i o n  i n  a p a r t i c l e  bed has  been discussed (Section I V Y  A) Although t h e  

values  obtained from t h e o r e t i c a l  ca lcu la t ions  a r e  of t h e  same order  of 

magnitude a s  those  obtained by i n t e r p r e t a t i o n  of experiments, t h e  depend- 

ence of s o l i d  conduction on p a r t i c l e  s i z e  was not as g r e a t  a s  t h a t  ob- 
served. 

inves t iga t ions  a s  i n  our work, h i s  values  of the  s o l i d  conduction may be 

used t o  e s t ima te  the  con t r ibu t ion  of s o l i d  conduction t o  e f f e c t i v e  thermal 

conduct ivi ty  These values  f o r  g l a s s  spheres,  based upon a bulk s o l i d  

conduct ivi ty  of For o the r  

temperatures a t  which t h e  bulk conduct ivi ty  is not 10 , a simple r a t i o  

method can be used t o  e s t ima te  t h e  s o l i d  conduction contr ibut ion.  

Because t h e  same types of g l a s s  beads were used i n  Watson's 

WattIcm'C, were given i n  Sect ion I V ,  A 
-2 

For qua r t z  a t  room temperature,  Young's modulus va r i e s  from 7 86 x 
2 lo1' dynes/cm2 t o  10 .3  x 10" dynes/cm , depending upon c r y s t a l  or ienta-  

t i o n ,  Also, t h e r e  i s  an inc rease  i n  modulus with decreasing temperature 

Because the  dependence of contact  conduction on t he  modulus is only t h e  

1 / 3  power, the  con tac t  conduction f o r  quar tz  should be  q u i t e  s imi la r  t o  

t h a t  of g l a s s  wi th  a modulus of 7 x 10l1 dynesfcm' 

were made i n  t h e  high s t r eng th  d i rec t ion ,  t h e  conduction contr ibut ion f o r  

quar tz  should be about 12% less than t h a t  of g la s s .  

thermal conduct ivi ty  of quar tz  s i g n i f i c a n t l y  increases  the  contact  con- 

duct ion compared t o  g l a s s  

I f  a l l  t h e  contacts  

However, the  higher 

2. Radiation Contribution t o  Thermal Conductivity 

Heat t r a n s f e r  i n  powders by thermal r a d i a t i o n  can take p lace  i n  sev- 

Radiation leaving a boundary surface  may pass  d i r e c t l y  e r a l  modes 

through voids t o  o the r  boundary surfaces  i f  the  m a t e r i a l  i s  s u f f i c i e n t l y  

porous 

p a r t i c l e s  and may encounter many r e f l e c t i o n s  and d i r e c t i o n  changes on 

passing through t h e  powder ma te r i a l  

In f i n e  powders r a d i a t i o n  is absorbed and s c a t t e r e d  by individual  
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The c a l c u l a t i o n  of r a d i a t i v e  t r a n s f e r  from t h e o r e t i c a l  p r inc ip l e s  

(1) ca lcu la t ion  of t he  absorpt ion  and can be ca r r i ed  out  i n  two s tages :  

s c a t t e r i n g  c h a r a c t e r i s t i c s  of i nd iv idua l  p a r t i c l e s  and (2) an ana lys i s  

of t he  t r a n s f e r  process with allowance f o r  mu l t ip l e  s c a t t e r  and r e r ad ia t ion  

a Single  P a r t i c l e  Absorption and S c a t t e r  

The absorption and scatter of r ad i a t ion  by a s i n g l e  p a r t i c l e  can be 

equated t o  t he  projec ted  a rea  of t he  p a r t i c l e  and t o  an e f f i c i ency  f a c t o r  

X or X which g ives  t h a t  f r a c t i o n  of t h e  area which is e f f e c t i v e  i n  ab- 

sorbing o r  s c a t t e r i n g  r ad i a t ion .  The e f f i c i ency  f a c t o r s  are funct ions  of 

t h e  index of r e f r a c t i o n  n, t he  index of absorption K ,  and a r a t i o  of t h e  

p a r t i c l e  c h a r a c t e r i s t i c  dimension and t he  wavelength A ,  a s  follows. 

a s  

xa = f l  (n, K, 2 n r l U  (IV-11) 

(IV- 12) X = f 2  (n, K ,  ?.rr/h) 

The r a t i o  of t h e  perimeter ( f o r  a sphe r i ca l  p a r t i c l e )  t o  wavelength, 

Zrr/X, i s  usual ly  defined as the  s i z e  parameter and w i l l  be denoted by x .  

The e f f i c i e n c y  f a c t o r s  may i n  p r inc ip l e  be obtained by the  so lu t ion  

of Maxwell's equations A genera l  so lu t ion ,  however, i s  ava i l ab l e  only 

f o r  a sphere and, even then, t h e  so lu t ion  is i n  t he  form of a series of Bessel 

funct ions  with complex arguments which are tedious  t o  evaluate ,  Fortu- 

na te ly ,  when the  p a r t i c l e s  are much l a r g e r  o r  smaller than the  wavelength 

of t h e  r ad i a t ion ,  so lu t ions  may be obtained without recourse t o  Maxwell's 

equations 

p a r t i c l e  which are absorbed and sca t t e r ed  are given by the  abso rp t iv i ty ,  

a, and r e f l e c t i v i t y ,  p ,  o r ,  i n  terms of t h e  nomenclature introduced above, 

when r >> A ,  

The f r a c t i o n s  of t h e  r ad i a t ion  inc iden t  on a l a rge  opaque 

(IV-13) 

(IV-14) 
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On t he  o the r  hand, p a r t i c l e s  smal ler  than t h e  wavelength or r a d i a t i o n  ab- 

sorb and s c a t t e r  according t o  Rayleigh's equat ions ,  When r < 0 1 h/n, 

2 4 n ~ x  ( IV-  15) 
2 2  x =  

a ( n 2 - K 2 + 2 ) + 4 n  K 

(IV-16) 

I n  the  range of p a r t i c l e  s i z e s ,  where t h e  c h a r a c t e r i s t i c  dimension is 
comparable t o  t h e  wavelength of r ad ia t ion ,  t h e  s o l u t i o n  t o  Maxwell's 

equations must be used 

f o r  spheres f o r  a few values  of n and K and share- dis t r ibuted programs 

a r e  ava i l ab le  f o r  generating add i t iona l  values  f o r  any n, K combination. 

Numerical values  of Xa and X have been computed 

The d i s t r i b u t i o n  of the  s c a t t e r e d  r a d i a t i o n  is a l s o  of i n t e r e s t  

It is given by t h e  phase funct ion p(B), which is  def ined a s  t h e  r a t i o  

of t h e  i n t e n s i t y ,  s c a t t e r e d  i n  a d i r e c t i o n  e t o  t h e  d i r e c t i o n  of propaga- 

t i o n  of t h e  inc iden t  beam, and t h e  average i n t e n s i t y  of a l l  t he  sca t t e red  

rad ia t ion .  For l a rge  p a r t i c l e s  whose su r face  r e f l e c t s  specular ly:  

(IV-17) 

r -  r - e  where p(+) is  the  r e f l e c t i v i t y  f o r  a beam incident  a t  an angle (7) 
r e l a t i v e  t o  t h e  su r face  normal, and ph is t h e  hemispherical r e f l e c t i v i t y  

I f  t h e  su r face  of t h e  l a r g e  sphere i s  a Lambert d i f f u s e  r e f l e c t o r ,  

For small p a r t i c l e s ,  
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For p a r t i c l e s  i n  the  in termedia te  s i z e  range the  d i r e c t i o n a l  d i s t r i b u t i o n  

of the  sca t t e red  i n t e n s i t y  is a complex funct ion  of angle ,  i n  genera l  with 

scatter predominantly i n  the d i r e c t i o n  of propagation ( L e  , forward 

s c a t t e r ) .  

b. Absorption and S c a t t e r  by Thin Powder Layers 

Once t h e  absorption and s c a t t e r  c ros s  sec t ions  and the  phase funct ion  

have been determined, the  ca l cu la t ion  of the  absorptance,  r e f l ec t ance ,  

and transmittance of a t h i n  powder l aye r  i s  s t ra ight forward.  

here  r e f e r s  t o  a l aye r  t h i n  enough so t h a t  t he  r ad ia t ion  i s  sca t t e r ed  

before  i t  escapes from t h e  l aye r  

a t i o n  inc ident  on a l aye r  of thickness dL is  therefore  given by: 

A t h i n  l aye r  

The f r a c t i o n a l  absorption of the  radi-  

2 absorbed N ( r )  II r Xa d r  dL = Ka dL 

where N(r) is t he  number of p a r t i c l e s  p e r  u n i t  volume whose radius  i s  be- 

tween r + d r  Simi lar ly ,  the  f r a c t i o n  of the  inc ident  r ad ia t ion  sca t t e red  

is: 

The terms i n  t h e  brackets ,  represent ing  the  f r a c t i o n a l  a t t enua t ion  per 

u n i t  length due t o  absorption and s c a t t e r ,  a r e  the  conventional absorption 

and s c a t t e r  c o e f f i c i e n t s  K and K 
S. 

The r e f l ec t ance  equals  the  f r a c t i o n  of the  r ad ia t ion  sca t t e red  back- 

wards ,  and i t  may be ca lcula ted  from the  phase funct ion  f o r  any d i r e c t i o n a l  

d i s t r i b u t i o n  of i nc iden t  r ad ia t ion .  The transmittance must, of course,  

equal the  complement of t h e  absorptance and r e f l ec t ance  

The above presenta t ion  has assumed t h a t  p a r t i c l e s  s c a t t e r  independently 

The p o s s i b i l i t y  of i n t e r a c t i o n  has been the  sub jec t  of a number of 
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i nves t iga t ions  

scatter a center- to- center d i s t ance  of separa t ion  between p a r t i c l e s  of 

a t  least 1.5 diameters ( t h i s  corresponds t o  p a r t i c l e  concentra t ions  less 

t han  20% of t he  t o t a l  volume) Churchi l l ,  e t  a l .  (1960) have a r r ived  a t  

similar conclusions from a study of s c a t t e r  by l a t e x  suspensions.  We 

conclude t h a t  t he  assumption of independent s c a t t e r  is good f o r  powder 

systems except f o r  materials which have been compacted under pressure  

Van de r  Huls t  (1957) g ives  a s  a c r i t e r i o n  f o r  independent 

c Radiation through Deep Powder Layers 

The mathematical formulation of t h e  r a d i a t i v e  t r a n s f e r  through deep 

powder l aye r s  wi th  allowance f o r  mu l t ip l e  s c a t t e r  and r e r ad ia t ion  by t h e  

p a r t i c l e s  gives rise t o  an i n t e g r a l  equat ion  i d e n t i c a l  i n  form t o  t h e  

equations s tud ied  extens ively  by the  phys i c i s t  and the  a s t rophys i c i s t  

The most genera l  so lu t ion ,  due t o  Chandrasekhar (1950), gives t h e  t rans-  

mission and r e f l e c t i o n  of r a d i a t i o n  through absorbing s c a t t e r i n g  media of 

th ickness  L i n  terms of t he  o p t i c a l  thickness of t h e  medium (Ka + Ks)L, 

t h e  r a t i o  of t h e  scatter t o  t he  t o t a l  a t t enua t ion  coe f f i c i en t  Ks/(Ka + Ks), 

and t h e  phase funct ion  p(8) 

so lu t ions  have been given by Churchi l l ,  e t  al. (1961) f o r  a number of d i f-  

f e r e n t  s i t u a t i o n s  

Numerical evaluat ion  of Chandrasekhar's 

A s imp l i f i ed  approach t o  t h e  ca l cu l a t ion  of r a d i a t i v e  t r a n s f e r  through 

powdered in su l a t ion  i s  poss ib l e  when t h e  powder l aye r s  are many mean f r e e  

paths  deep I n  t h i s  case t h e  r a d i a t i v e  t r a n s f e r  can be t r ea t ed  as a d i f-  

fus ion process with t he  f l u x  dens i ty  a t  any wavelength given by: 

4 n  dE 
q A  = 3 (Ka + Ks) (IV-22) 

where E is  t h e  monochromatic black emissive power The f lux  dens i ty ,  

i n t eg ra t ed  over t he  e n t i r e  spectrum, is then: 
x 

A weighted mean absorption coe f f i c i en t  may be defined such t h a t  
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4 

(IV-24) 

where E is t h e  t o t a l  b lack emissive power given by t h e  Stefan-Boltzman 

l a w .  

following i n t e g r a l  

This average, known a s  t h e  Rosseland mean, may be obtained from the  

1 
(IV-25) 

where v a h e s  of g have been tabula ted as funct ions  of AT 

The above de r iva t ions  a r e  v a l i d  provided (Ka + Ks)L is g r e a t e r  than 

th ree  throughout the  spectrum and t h e  s c a t t e r  is i s o t r o p i c  Anisotropy 

of s c a t t e r  can be included by def ining an e f f e c t i v e  a t t enua t ion  K 

t o  the  t r u e  value by the  following equation: 

r e l a t e d  

.__ 

K = K (1 - COS e )  (IV-26) 

- 
where cos 8 is a measure of the  unbalance of the  r ad ia t ion  sca t t e red  for-  

ward and backward It is  given by 

- 
COS e = Q p(e )  COS e dR/4n (IV-27) 

and it  is zero f o r  i s o t r o p i c  s c a t t e r ,  p o s i t i v e  or negat ive  f o r  r ad ia t ion  

s c a t t e r e d  predominantly forwards o r  backwards, respect ively  

d.  Application of Powder Systems 

For p a r t i c l e s  which a r e  l a r g e  o r  small  compared t o  the  wavelength of 

r ad ia t ion ,  absorpt ion and scat ter ing,  parameters can be evaluated i f  t h e  

bulk o p t i c a l  p roper t i e s  and r e f r a c t i v e  ind ices  a r e  known For p a r t i c l e s  

of in termediate  s i z e ,  more d i f f i c u l t y  is encountered i n  evaluat ing t h e  

parameters,but adequate es t imates  can be made i f  t h e  o p t i c a l  p roper t i e s  

a r e  known. 

67 



For most powder l a y e r s  t h e  d i f fu s ion  approach t o  r a d i a t i v e  hea t  t rans-  

fer w i l l  be acceptable  i n  view of t h e  normally h igh  va lues  of absorp t ion  

and s c a t t e r i n g  coe f f i c i en t s  

r ad i a t i on  can be  est imated from equation IV-24 f o r  a gray body, as follows: 

The e f f e c t i v e  thermal conduct iv i ty  due t o  

2 3  

k r = q  r a, AT 3 (Ka + Ks) 

1 6  u n Tave 
(IV-28) 

ave 

The cont r ibut ion  of r ad i a t i on  t o  thermal conductivi ty would be  propor t ional  

t o  t h e  cube of t h e  absolu te  temperature, provided t h a t  Ka and K, were no t  

functions of temperature For gray bodies, where t h e  o p t i c a l  p rope r t i e s  
are independent of wavelength, t h e  absorption and s c a t t e r i n g  parameters 

should be only s l i g h t l y  dependent upon temperature The equation above 

i s  t h e  one normally used f o r  r a d i a t i v e  t r an spo r t  i n  porous and par t icu-  

late materials, where t h e  va lues  of (Ka + Ks) 

emittance of t h e  material and a funct ion  of t h e  p a r t i c l e  s i z e  or spacing. 

For real materials, Which i n  genera l  a r e  not  gray, i t  i s  necessary t o  

eva lua te  r ad i a t i on  conductivi ty from t h e  following equation: 

are r e l a t e d  t o  t h e  
ave 

(IV-29) 

It is thus necessary t o  have va lues  f o r  n ,  Ka,and Ks 

e .  Measurements of Absorption and S c a t t e r  Coeff ic ien ts  

We intended t o  make experimental  measurements of t h e  transmission of 

i n f r a r ed  r ad i a t i on  through powder samples i n  order t o  eva lua te  these  

parameters 

sons 

of s i l i c a t e  materials i n  t h e  s p e c t r a l  range of importance (-5-31p f o r  

400°K and -19-125~ f o r  100%) In reasonable th icknesses  most silicates 

are q u i t e  opaque throughout much of t h i s  region,  although they become 

more transmissive toward t h e  ends of t h e  region The opaci ty  due t o  

absorp t ion  is  only a lower l i m i t ,  because f o r  most p a r t i c l e s  s i z e s  scatter- 

i n g  w i l l  a l s o  i nc r ea se  t h e  opacity.  

ments f o r  exceedingly t h i n  samples f o r  experimental measurements. 

Such measurements proved impracticable f o r  a number of rea- 

The f i r s t  and g r e a t e s t  d i f f i c u l t y  der ives  from t h e  g r e a t  opac i ty  

These condi t ions  r e s u l t  i n  t h e  require-  

Such 
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powder samples would r e s u l t  i n  experimental problems involving uncer ta in  

a r e a l  coverage as w e l l  a s  in t roducing poss ib l e  i n t e r f e rence  e f f e c t s  i n t o  

t he  measurements 

f Evaluation of Radia t ive  Conductivity from Opt ical  Constants 

We decided, t he re fo re ,  on an approach involving computer ca l cu l a t ions ,  

u t i l i z i n g  new t h e o r e t i c a l  r e s u l t s  concerning t h e  r a d i a t i v e  p rope r t i e s  of 

f i n e  powders (Emslie, 1966b; Aronson, e t  a1 , 1966). 

powder f o r  t he  test model, w e  were a b l e  t o  neglect  s c a t t e r i n g ,  which 

f a l l s  off  r ap id ly  with p a r t i c l e  s i z e  when t h e  p a r t i c l e  s i z e  is less than 

the  wavelength 

t i ons  (Clark, 1957) w a s :  

By using a f i n e  

Under these  condi t ions  t h e  equat ion  used i n  t h e  ca lcula-  

where 

0 
4 A K  a = -  x 

(IV-30) 

It w a s  shown (Aronson, Emslie, Allen and McLinden, 1966) t h a t  the  

o p t i c a l  cons tants ,  n and K ,  of  a composite medium where s ca t t e r ing  is  

neg l ig ib l e  can be represented by: 

(n - i c c  ) 2  - 1 
p P (np - i c c  l 2  + 2 

(n - i K I 2  - 1 = 1 
(n - i c ) 2  + 2 

p 
(IV-31) 

P 

where p r e f e r s  t o  t h e  species  present  (and formally inc ludes  vacuum as 

one of t he  spec i e s )  and f is the  volume f r a c t i o n s  of each of t h e  various 

species  

For s eve ra l  reasons,  quar tz  w a s  chosen as a material f o r  use wi th  

equations IV-30 and IV-31 i n  order  t o  test our ca l cu l a t ions .  F i r s t ,  t h e  

d a t a  i n  t h e  re levant  wavelength region (Sp i t ze r  and Kleinman, 1961) is of 

high q u a l i t y  and quar tz  is a w e l l  charac ter ized ,  e a s i l y  obta inable  
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material. 

e n t  o p t i c a l  p rope r t i e s  i n  d i f f e r e n t  d i r ec t ions ,  w e  were ab le  t o  test the  

mixing equation I V- 3 1  by using d a t a  from c r y s t a l s  a l igned both p a r a l l e l  

and perpendicular t o  t he  i nc iden t  r a d i a t i o n  

f r a c t u r e  and, t he re fo re ,  no s i g n i f i c a n t  prefer red  o r i e n t a t i o n  of t he  

c r y s t a l l i t e s ,  w e  were ab le  t o  assume t h a t  twice as many c r y s t a l l i t e s  would 

be or iented  wi th  t h e i r  o p t i c  a x i s  perpendicular (X-cut quar tz)  t o  t h e  radi-  

a t i o n  beam than would be or i en t ed  p a r a l l e l  (Z-cut quar tz)  t o  i t  

Second, because an i so t rop ic  c r y s t a l l i n e  materials have d i f f e r -  

Since qua r t z  has  a chonchoidal 

Using the  d i spe r s ion  parameters obtained by Sp i t ze r  and Kleinman 

(19611, our computer program recomputed the  o p t i c a l  constants of quar tz  

i n  order t o  avoid e r r o r s  i n  reading d a t a  po in t s  from t h e i r  graphs The 

o p t i c a l  cons tants  were then used with equation IV-31 t o  obta in  t h e  

“averaged” o p t i c a l  cons tants .  These i n  t u r n  were used i n  equation IV-30 

t o  c a l c u l a t e  t he  r a d i a t i v e  conduct iv i ty  

of 400°K are shown i n  Table IV-4. 

The r e s u l t s  f o r  a temperature 

The i n t e g r a t i o n  was c a r r i e d  out from 5 - 3 7 ~ ,  excluding less than 7% 

It must be remembered of the black-body energy f o r  a system a t  400’K. 

t h a t  t he  value of kr ca lcula ted  he re  is an upper l i m i t  because s c a t t e r i n g  

w i l l  decrease  i t  f u r t h e r  The v a l i d i t y  of our approach is  l imi ted  t o  

small  s i z e  p a r t i c l e s  and voids (less than a few microns) so  t h a t  s c a t t e r -  

ing  w i l l  be s m a l l  and our mixing r u l e  f o r  composites can be used 

These r e s u l t s  appear t o  be i n  reasonable agreement with t h e  r e s u l t s  

of experimental measurements of t h e  conduct iv i ty  which are discussed 

later. This technique can be appl ied  t o  o the r  systems provided t h e  o p t i c a l  

cons tants  are known. I n  many cases,  it w i l l  be more d i r e c t  t o  measure 

o p t i c a l  cons tants  than t o  attempt t o  obta in  t h e  s c a t t e r  and absorpt ion  

coe f f i c i en t s .  Furthermore, once t h e  constants  are measured, they can be 

used to  p r e d i c t  t he  r a d i a t i v e  conduct iv i ty  over any temperature range 

f o r  a v a r i e t y  of packing d e n s i t i e s  and f ac to r s .  

3. The Thermal Parameter--(kpc) -1/2 

I n  many analyses of l una r  temperatures t he  parameter (kpc>-’” has  

been used. As explained i n  our last r epo r t  (Wechsler, 1964) t h i s  forms 
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TABLE IV-4 

CALCULATED RADIATIVE CONDUCTIVITY OF QUARTZ AT 400°K 

Material Fraction kr wattsIcm'K 

Z-cut Quartz 1 3,48 

X-cut Quartz 1 2.83 

"Random" Quartz 0.33 Z-Cut 2.86 

Diluted Random Quartz 0 5 random 4 82 

Diluted Random Quartz 0.1 random 1.91 

0 67 X-cut 

0.5 vacuum 

0 9 vacuum 
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p a r t  of t h e  parameter which con t ro l s  the  su r face  temperature during luna- 

t i o n s  and e c l i p s e s  When t h e  conduct ivi ty  or s p e c i f i c  heat  is a funct ion 

of temperature,  t h e  thermal parameter has  l e s s  s ign i f i cance  because it is 

not constant  but v a r i e s  during t h e  course of t h e  lunat ion 

common po in t  of comparison f o r  use with t h e  data  of o the r  inves t iga to r s  

w e  w i l l  c a l c u l a t e  values  of (kpc~c)-~” taken a t  temperatures from 200 t o  

400°K. This temperature range was chosen because i t  i s  near t h e  middle 

of the  lunar  temperature range and is commonly used f o r  r epor t ing  thermal 

conduct ivi ty  da ta .  

C THERMAL CONDUCTIVITY MEASUREMENTS 

To provide a 

1 Approach 

To provide a b e t t e r  understanding of t h e  mechanisms and r a t e s  of hea t  

t r a n s f e r  i n  powdered and ves icu la r  m a t e r i a l s ,  w e  have ca r r i ed  out a s e r i e s  

of measurements of thermal conduct ivi ty  and analyzed the  r e s u l t s  i n  order  

t o  a s c e r t a i n  t h e  r e l a t i v e  magnitudes of the  conduction and r a d i a t i o n  

mechanisms. The following s t e p s  were ca r r i ed  out :  

a ,  Se lec t ion  and preparat ion of powdered and porous samples f o r  

the  t e s t  program; 

b Measurement of t h e  e f f e c t i v e  thermal conduct ivi ty  of t h e  

powdered and porous ma te r i a l s  i n  t h e  temperature range 

from lOO‘K t o  400’K; 

C.  Determination from t h e  l i t e r a t u r e  or experimental measure- 

ments of t h e  dependence of t h e  bulk phase thermal conduc- 

t i v i t y  on temperature; 

Analysis and c o r r e l a t i o n  of the  da ta  on t he  b a s i s  of theore- 

t i c a l  models t o  obta in  t h e  r ad ia t ion  and s o l i d  conduction 

con t r ibu t ions  t o  thermal conductivity; 

d. 

e. Evaluation of t h e  r ad ia t ion  con t r ibu t ion  t o  thermal conduc- 

t i v i t y  by an independent a n a l y t i c a l  or experimental method 

and comparison of the  r e s u l t s  with those  obtained from ana- 

l y s i s  of t h e  experimental thermal conduct ivi ty  da ta ;  and 
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f Examination and comparison of t he  experimental  da t a  and t h e  

r a t i o  of conduction t o  r a d i a t i v e  heat  t r a n s f e r  with t he  re- 

s u l t s  of o the r  experimental  measurements 

The d e t a i l s  of t he  measurements and the  program r e s u l t s  a r e  discussed 

below. 

2 Sample Materials 

I n  our i n i t i a l  cons idera t ions ,  we proposed t o  examine two g l a s se s  and 

two c r y s t a l l i n e  ma te r i a l s ;  a n a t u r a l  and an a r t i f i c i a l  material of each 

type was t o  be used Or ig ina l  choices were e n s t a t i t e ,  o l i v ine ,  and 

s i l i c a  p a r t i c l e s ,  It became evident t h a t  t he  prepara t ion  of these  mate- 

rials i n  t he  required  s i z e  ranges and volumes f o r  t h e  experimental pro- 

gram would not be poss ib l e  wi th in  our present  scope of work Also, it 

was des i r ab l e  t o  use materials which had been examined by o ther  i nves t i-  

ga to r s  and ma te r i a l s  f o r  which r ad i a t ion  ca l cu l a t ions  could be  made 

these  reasons w e  chose g l a s s  beads, pumice, b a s a l t ,  and quar tz  powders; 

pumice and b a s a l t  i n  t h e  n a t u r a l  ves i cu l a r  form; s o l i d  g l a s s  and quar tz  

f o r  the  program. The p r i n c i p a l  c h a r a c t e r i s t i c s  of t he  materials used are 

summarized i n  Table IV-5 
a l l  samples except ves i cu l a r  b a s a l t  and s o l i d  qua r t z ,  s u f f i c i e n t  l i t e r a t u r e  

da t a  were a l ready ava i l ab l e  on these  two materials. 

For 

Experimental measurements w e r e  c a r r i ed  out on 

Glass beads were purchased from Microbeads, Inc  , Jackson, Miss iss ippi  

The beads a r e  a soda l i m e  g l a s s  and are prepared i n  a va r i e ty  of s i z e  

ranges. Two s i z e s  were ordered.  4 4 - 6 2 ~  and 22-281~. Also, a sample 

of t h e  bulk g l a s s  used f o r  making the  microbeads w a s  obtained 

with a s i z e  of 22-281~. were a s p e c i a l  order  

t he  material could not  be provided by Microbeads, Inc  , and the  order w a s  

cancelled.  

The beads 

After e i g h t  months' delay,  

Approximately 98-1002 of t h e  l a r g e r  s i z e  beads pass a No 230 s i eve  

( 6 2 ~ ) ;  92-100% are re t a ined  on a No 325 s i eve  (4411). The manufacturer 

i nd i ca t e s  t h a t  t h e  thermal conductivity of t he  bulk material is  2 5 x 

and t h a t  t he  modulus of e l a s t i c i t y  is 11 x l o 6  l b / i n 2  ( 7 . 6  x 1011 dynes/cm ) 

3 
cal/cm sec'C (1 05 x lo-' watt/cm°C), t h a t  i t s  dens i ty  i s  2 5 gm/cm , 

2 
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4 

P r i o r  t o  use,  t h e  sample w a s  baked out  f o r  14 hours a t  600'K under vacuum. 

Pumice powder samples were prepared from t h e  pumice sample used i n  

The pumice has an  average our previous work (Wechsler, et  a1 , 1963) 

composition of SiO2-7O.4%, A1 0 -15.8%, FeO-1 4%, Ti02-0.3%, and H20-3 2% 

The powder w a s  prepared by gr inding t h e  pumice i n  a i r  and separa t ing  the  

material by s tandard s i ev ing  methods 

and <37~(. 

t h a t  95% of t h e  p a r t i c l e s  w e r e  within the range of 1 0 - 3 7 ~ .  

w e r e  baked under atmospheric p ressure  and under vacuum p r i o r  t o  use ,  

2 3  

Two s i z e  samples w e r e  used 44-74~  

Examination of t h e  sample with smaller  p a r t i c l e  s i z e  showed 

The samples 

Basal t  powder samples were prepared from the  ves icu la r  b a s a l t  sample 

(Arizona b a s a l t )  used i n  our previous work (Wechsler, e t  a l . ,  1963) The 

nominal composition is:  Si02-49 1%, A 1  0 -15.7%, Fe0-6.7%, Fe203-5 4%, 

Mg0-6.2%, Cu0-9,0%, Na20-3 1%, K20-1 5%, Ti02-0.4%, P 0 -0 2 % ,  and H20- 

1 3%. The m a t e r i a l  w a s  ground i n  a b a l l  m i l l  i n  a i r  and s ieved t o  the  

des i red  s i z e  f r a c t i o n .  

were obtained. 

2 3  

2 5  

Samples with p a r t i c l e  s i z e s  of  44-7C and 10-3& 

Samples w e r e  d r i e d  before  use i n  the  conduct ivi ty  measurements 

Quartz  powder w a s  prepared by crushing and gr inding a c r y s t a l l i n e  quar tz  

sample The p a r t i c l e  s i z e  range, obtained from microscopic counts o f  sev- 

eral samples, i s  estimated as follows: 

- S i z e  Volume % 

< IF( 1 

1- 5lJ 95 

5-1@ 3 

10-3% <o,  5 

'3Q Negligible  

The pumice sample w a s  obtained from t h e  same material used i n  our pre- 

vious work 

source (probe) apparatus  w a s  drawn through t h e  cen te r  of  a l a r g e  sample 

(See discussion of apparatus ) The sample w a s  not baked out p r i o r  t o  use 

but was evacuated f o r  s e v e r a l  days p r i o r  t o  measurements 

No s p e c i a l  preparat ion techniques were used The l i n e  h e a t  

A s o l i d  microbead g l a s s  sample w a s  prepared by melt ing a por t ion  of 

the  g l a s s  suppl ied by the  manufacturer i n  a clay c r u c i b l e  and pouring t h e  

t 
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molten g lass  i n t o  a ceramic sample holder conta ining the  wires f o r  t h e  

thermal conductivity apparatus  

r a t u s  a r e  discussed below. 

The techniques used f o r  making t h e  appa- 

3 Fxperimental Methods and Apparatus 

a Powder Samples 

(1) Method. The l i n e  heat  source  method was used f o r  a l l  

measurements of thermal conduct ivi ty  of powders The method was chosen 

because of i ts  s impl i c i ty ,  t h e  small  volume of sample required,  and t h e  

s u i t a b i l i t y  f o r  use i n  a high vacuum system. 

The constant  heat  production by a l i n e  source of heat  enclosed i n  an 

i n f i n i t e  volume of ma te r i a l  produces a c y l i n d r i c a l  temperature f i e l d .  

The temperature r i s e  a t  any po in t  above t h e  i n i t i a l  ambient (assumed t o  
be uniform) temperature is: 

(IV-32) 

where q is t h e  power pe r  u n i t  length,  k and ci a r e  t h e  e f f e c t i v e  conduct ivi ty  

and d i f f u s i v i t y  of the  ma te r i a l ,  t is t h e  time from the  i n i t i a t i o n  of heat- 

ing,and E i  represents  t h e  exponential  i n t e g r a l  and is  given by: 
m 

--x 
- E i  (-x) = I dx (IV-3 3) 

X 

The boundary condi t ions  are:  t = 0, r # 0, T = 0; t > 0, r = m, T = 0; 
and t > 0, r + 0, q = const = -2nr k -. dT 

d r  

From measurements of t h e  r a t e  of rise of temperature,  t h e  conductivity 

of the  sample may be ascer ta ined.  In most app l i ca t ions  of t h e  l i n e  heat  

source apparatus ,  it is customary t o  ca r ry  out t h e  experiment f o r  s u f f i -  

c i e n t l y  long durat ions  so t h a t  the  exponent ia l  i n t e g r a l  may be  approximated 

as: 

t h e  source becomes propor t ional  t o  time,and the  conduct ivi ty  may be computed 

from a p l o t  of temperature rise versus  logarithm of t i m e  In t h i s  case, 

i t  is not  necessary t o  know t h e  thermal d i f f u s i v i t y  o r  t h e  d i s t ance  from 

t h e  source.  

2 
4ci t 

- 0,577 - I n  II. Then, t h e  temperature r i s e  a t  any d i s t ance  from 

d 
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Because of t h e  low thermal d i f f u s i v i t y  of  t h e  powders, i t  is  not  de- 

s i r a b l e  t o  w a i t  t h e  long t i m e s  requi red  f o r  t h e  logar i thmic  formula t o  be  

v a l i d  

The temperature rise a t  any poin t  i n  t h e  sample is propor t iona l  t o  t h e  

hea t e r  power, inverse ly  propor t ional  t o  t h e  thermal conductivi ty,  and 

propor t ional  t o  a genera l ized  funct ion  of t h e  form E i  (- ?),where Z repre- 

s e n t s  4 a t / r 2  

r i thm t i m e  should have t h e  same shape as a generalized p l o t  of logari thm 

E i  (- -) versus logari thm Z 

The conductivi ty can still  be evaluated i n  t h e  following manner, 

1 

Therefore,  a p l o t  of logari thm temperature rise versus loga- 

1 
Z 

To f i n d  t h e  conduct iv i ty ,  t h e  experimental da t a  p l o t  (In T versus In 

t )  is f i t t e d  t o  t h e  genera l ized  p l o t  of I n  E i  (- -1 versus  In  Z ,  and t h e  

temperature, T*, corresponding t o  an ord ina te  (Ei  (- 1)) of unity is  ob- 

ta ined  (In matching t h e  curves it i s  necessary t o  maintain t h e  axes 

p a r a l l e l  ) The conduct iv i ty  is then given as: 

1 

z 1  

(IV-34) 

Because of t h e  c h a r a c t e r i s t i c  shape of t h e  curves,  they are easy t o  match 

and matching e r r o r s  are usual ly  s m a l l .  

Severa l  sources  of e r r o r  must be  considered i n  t h e  use of t h e  l i n e  

hea t  source,  namely:(l) i n  an a c t u a l  system, t h e  hea t  source is  n e i t h e r  

i n f i n i t e l y  long nor t h i n ;  (2) t h e  sample has been assumed t o  be i n f i n i t e  

i n  e x t e n t  and homogeneous; (3) hea t e r  power may vary during a measurement; 

and (4) temperature measurements may be  i n  e r r o r  

may be cont ro l led  by c a r e f u l  experimental  technique 

constant  i n  our experiments t o  wi th in  

The last  two e r r o r s  

Heater power was  

1% and w a s  measured t o  an accuracy 

of * 2%. 

The f i n i t e  length  and diameter of t h e  heat  source (and temperature 

(1) hea t  is l o s t  by a x i a l  sensor)  a f f e c t  t h e  measurement i n  two ways. 

conduction along t h e  w i r e  and temperature sensor ,  and (2) some of t h e  

material is disp laced  by t h e  hea t e r  and sensor wires 

ing  these  e f f e c t s  are described by Salisbury and Glaser (1964). The 

e r r o r  introduced by t h e  f i n i t e  w i r e  diameter is less than  0 5% f o r  t h e  

Methods f o r  analyz- 
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wire spacing 0 11 inch and diameter 0 001 inch used 
caused by axial heat loss in the heater and thermocouples is given by the 

equation: 

The relative error 

(IV-35) 

where kw is the conductivity of the heater (or thermocouple) wire; ks is 
the sample conductivity;and a and L are the radius and length of the wires 
W e  have chosen constantan for the heater wire and an iron-constantan 
thermocouple because of the low conductivities of these materials 
the system we used: 

For 

= 0.225 watt/cm°C kcons tantan 

kiron = 0.55 watt/cm°C 

a 

L 

= 0.0005" = 0,0013 CIU 

= 15 2 cm 

ksample = wattlcmoc 

For the worst case of the iron wires in a typical powder sample, the rela- 
tive error is less than 2%; for the actual case where there is a combina- 
tion of constantan and iron wires, the relative error should be less than 
1% 
measurements We have also examined the effects of sample size and con- 
cluded that for most powders a sample 2 cm thick and 2 cm deep should be 
satisfactory for experiment durations up to four hours It is difficult 
to assess the effects of sample homogeneity and initial temperature dis- 
tribution However, care was taken in placing the sample on the appara- 

tus and assuring that a homogeneous sample of relatively uniform density 
was used. 
not known, the change in temperature with time at the sensor was monitored 
prior to tests. 
was less than 0.2"C per hour 

Thus,a line heat source of 15 an length should be adequate for our 

Although the initial temperature distribution in the sample is 

Tests were not initiated unless the temperature drift 
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In sumary ,  t h e  e r r o r s  i n  t h e  a p p l i c a b i l i t y  of t h e  theory of t h e  l i n e  

hea t  source method should be less than t 2%; e r r o r s  i n  eva lua t ing  t h e  

conduct iv i ty  from matching t h e  experimental curves wi th  t h e  standard curve 

are about _+ 4%; e r r o r s  i n  measurement of t h e  hea t e r  power and length are 

less than _+ 2% 

than  _+ 8% 
Thus t h e  o v e r a l l  e r r o r  i n  t h e  measurements should be less 

( 2 )  Apparatus and Procedure. A small chamber s u i t a b l e  f o r  

use  with an i o n  pumped vacuum system was designed and cons t ruc ted ,  

Figure IV-2 shows a schematic diagram of t h e  chamber 

of  s t a i n l e s s  steel  and conta ins  s e v e r a l  Conflat  f langes  which a r e  con- 

nected t o  (1) pumping p o r t s ,  ( 2 )  an i on i za t i on  guage, ( 3 )  t h e  sample 

holder,  and ( 4 )  hea t e r  and thermocouple w i r e  feedthroughs The e n t i r e  

system may be baked out  by surrounding t h e  chamber with an oven 

Varian &l i t e r  VacIon pumps are normally used, one during system bakeout 

and the  second during t h e  measurements 

cated from shee t  copper and copper c o i l s  w e r e  brazed t o  t h e  holder 

sample holder has  dimensions of 16  5 cm long x 2 4 cm square The copper 

c o i l s  are a t tached  t o  s t a i n l e s s  steel  "pant legs" , so t h a t  a f l u i d  can be 

introduced t o  t h e  i n t e r i o r  of t h e  chamber and c i r cu l a t ed  i n  the  c o i l  around 

t h e  sample holder .  The sample holder and thermocouple-heater w i r e  feed- 

through a r e  a t tached  t o  t h e  vacuum chamber by means of a Conflat  f lange ,  

so t h a t  t h e  holder can be  removed from t h e  chamber without disconnecting 

t h e  cooling f l u i d  o r  e l e c t r i c a l  connections 

of t h e  sample holder showing t h e  high vacuum f lange ,  e l e c t r i c a l  lead  w i r e s  

and sample (Basalt  powder), F igure  IV-4 shows t h e  l i n e  hea t  source appa- 

r a t u s  

t h e  sample holder ,  

t h e  hea t e r  and thermocouple w i r e s ,  bu t  these  were changes t o  s t a i n l e s s  

steel  hypodermic tubing (0.020 in .  diameter) t o  reduce breakage during sample 

prepara t ion  

steel pos t  t o  i n s u l a t e  t h e  e l e c t r i c a l  l eads .  

(0 0 0 2 5  cm) constantan,  8 i n  ( 2 0 , 4  cm) long. The l eng th  of unsupported 

w i r e  (between t h e  s t a i n l e s s  steel o r  g l a s s  pos ts )  w a s  6 i n  

iron-constantan thermocouple ( s i l v e r  brazed),  0.001 i n .  (0.0025 cm) diameter 

It is  constructed 

Two 

A copper sample holder was fabr i-  

The 

Figure IV-3 is a photograph 

The base  is a copper p l a t e  0 16 cm t h i c k  which f i t s  snugly i n t o  

Pyrex g l a s s  supports  were o r i g i n a l l y  used t o  support 

A small  p i ece  of ceramic tubing was cemented t o  t h e  s t a i n l e s s  

The hea t e r  w i r e  w a s  0 001 i n ,  

(15 2 cm) An 
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was placed t o t a l  thermocouple w i r e  length  w a s  a l s o  8 i n .  (20 4 cm) 

Heavier copper, i r on  and constantan leads  w e r e  used f o r  connecting t h e  

hea t e r  and thermocouple t o  t h e  feedthrough The feedthroughs,  which w e r e  

s i l v e r  brazed a t  one end, were hollow tubes through which t h e  continuous 

hea t e r  o r  thermocouples w e r e  l ed  

less than 1% of the  r e s i s t ance  of t he  8 i n ,  length  of t h e  one m i l  con- 

s t a n t a n  hea t e r  w i r e  

The r e s i s t ance  of t h e  hea t e r  leads  w a s  

The remainder of t h e  apparatus consis ted  of a 12-volt b a t t e r y  a s  a 

power supply, a K-3 potentiometer f o r  temperature measurements, a 

Honeywell Elec t ronik  recorder  with a f u l l  s c a l e  de f l ec t ion  of 100 i.tvolts, 

and Weston ammeters and vol tmeters  A r ec i r cu l a t ing  f l u i d  bath  with a 
dry ice-Freon mixture w a s  used t o  obta in  temperatures near -4O'C For 

o the r  temperatures,  cold o r  hot  water, hot  o i l ,  o r  l i q u i d  o r  gaseous 

n i t rogen w a s  used a s  t he  c i r c u l a t i n g  f l u i d  Pressure  measurements w e r e  

made with a Varian gauge c o n t r o l  and a "nude" gauge 

The following test procedure was used f o r  a l l  powder tests: 

(1) The sample w a s  baked i n  an oven i n  air  f o r  a t  least 24 hours 

and cooled i n  a des s i ca to r .  

(2) The sample w a s  c a re fu l ly  placed on the  l i n e  heat  source  apparatus 

and s l i g h t l y  v ibra ted  t o  obta in  a uniform d i s t r i b u t i o n ,  t h e  sample 

was weighed and i t s  dimensions obtained, 

(3)  The sample holder  was ca re fu l ly  placed i n t o  t he  sample chamber 

and sea l ed ,  and the  system was baked again  under high vacuum 

a f t e r  t h e  chamber w a s  slowly evacuated with absorpt ion  pumps 

( 4 )  After  bakeout, t he  sample and chamber were allowed t o  cool The 

high vacuum valve between one of t he  pumps and the  sample w a s  

c losed,  and t h e  o the r  pump ( i  e , the  one which had been baked 

ou t )  w a s  s t a r t e d  

(5) When t h e  sample was a t  t h e  des i red  temperature, cont ro l led  by 

t h e  temperature of t h e  c i r c u l a t i n g  f l u i d ,  and t h e  temperature 

change w a s  less than 0 2OC per hour, t h e  i n i t i a l  temperature w a s  

measured and a test w a s  s t a r t e d .  
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( 6 )  Power w a s  app l ied  t o  t h e  h e a t e r ,  and t h e  response of t h e  thermo- 

couple w a s  recorded, 

h e a t e r  power were recorded several t i m e s  during the  two hour test 

period 

Measurements of t h e  system pressure  and 

(7) A t  the  conclusion of t h e  test, t h e  system w a s  allowed t o  r e t u r n  

t o  thermal equil ibr ium and another  test w a s  c a r r i e d  ou t  at a d i f-  

f e r e n t  hea te r  power o r  i n i t i a l  temperature, 

During t h e  tests with quar tz  powder and b a s a l t  1 0 - 3 7 ~  powder, only 

one VacIon pump was i n  opera t ion ;  never the less ,  low sample pressures  were 

obtained. 

b So l id  Glass Samples 

The guarded cold p l a t e ,  thermal conductivi ty probe, and l i n e  heat  source  

The cold p l a t e  has  sev- methods were considered f o r  use with s o l i d  samples 

era l  disadvantages: (1) a l a r g e  sample s i z e  is required;  (2 )  t h e  sample 

should be f l a t  and have p a r a l l e l  s i d e s ;  and (3) l a r g e  grad ien ts  are normally 

used which, i n  t h e  case of g lasses ,  may introduce boundzry e f f e c t s  The 

use of t h e  probe a l s o  requi res  a f a i r l y  l a r g e  sample i n  which a ho le  has 

been care fu l ly  d r i l l e d j  a l s o ,  t h e  contact  r e s i s t a n c e  between t h e  probe and 

the  sample may introduce e r r o r s .  

We chose t h e  l i n e  heat  source method f o r  the  program because i t  re- 

q u i r e s  t h e  smallest sample, avoids contac t  r e s i s t a n c e  problems, and 

permits measurements t o  be made as a funct ion of temperature 

i t  is necessary t o  embed h e a t e r  wires and temperature sensors  wi th in  t h e  

g l a s s .  Severa l  methods f o r  forming a l i n e  heat  source i n  t h e  g l a s s  were 

considered feas ib le :  

c a s t i n g  the  molten sample i n t o  a frame containing and support ing t h e  

w i r e s ,  (2) use of a hea te r  and thermocouple wires cas ted  as above, 

(3) vapor depos i t ion  of t h i n  r e s i s t a n c e  elements onto c a r e f u l l y  prepared 

g l a s s  samples, and (4) preparing two p l a t e s  of t h e  s o l i d  and "sandwiching" 
t h e  hea te r  and temperature sensors  between them. The f o u r t h  technique 

w a s  el iminated a f t e r  an  experimental t r i a l  because of the  d i f f i c u l t i e s  

i n  preparing t h e  sample i n  f l a t  p l a t e s  and e l imina t ing  gaps between t h e  

p la tes .  

However, 

(1)  use of r e s i s t a n c e  wires embedded i n  a sample by 

The t h i r d  technique was el iminated because of the high cos t  and 

I 
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requirements f o r  p l a t i n g  one sample and then fus ing i t  t o  another sample 

On t h e  b a s i s  of our pas t  use of thermocouples, we chose t o  c a s t  a hea t e r  

and thermocouple wire i n t o  a g l a s s  sample 

I n  a f i r s t  a t t e m p t  t o  prepare  such a sample, g l a s s  beads s imi l a r  t o  

those t o  be  used were melted i n  a clay c ruc ib l e  and poured i n t o  a mold 

made from magnesia f i r e b r i c k  

were d i s t o r t e d  because of t h e i r  thermal expansion and inadequate t ens ion  

devices,  t he  g l a s s  formed a c l e a r  mass surrounding the  platinum/platinum- 

rhodium thermocouple and Nichrome hea t e r  w i r e s  

platinum w i r e s  on a f l a t  slab of g l a s s  and covered t h e  g l a s s  wi th  an 

i d e n t i c a l  s l a b  The s l a b s  were fused i n  a vacuum oven a t  620°C and 

annealed A d i s t i n c t  i n t e r f a c e  between t h e  two s l a b s  remained even 

though they were fused Because t h i s  i n t e r f a c e  could inva l ida t e  t he  ex- 

periments, w e  again t r i e d  t h e  ca s t ing  method After  s eve ra l  unsuccessful  

a t t e m p t s  w e  prepared a g l a s s  sample from the  bulk Microbead ma te r i a l  by 

pouring the  molten g l a s s  onto a heated c a s t  i r o n  " cas t ing  plate" containing 

tensioned w i r e s  By slowly cooling the  p l a t e ,  an adequate s a m p l e  about 

4 in .  long and 1 i n  square w a s  obtained A platinum hea t e r  wire and a 
platinum-rhodium thermocouple were used because of t h e i r  s t a b i l i t y  i n  the  

high temperature molten g l a s s  However, t h e  emf o f  t h i s  couple decreases 

a t  low temperatures so t h a t  i t  w a s  not s a t i s f a c t o r y  f o r  use below about 

-2OOC 

alumel thermocouple, bu t  a r eac t ion  with t h e  hot  g l a s s  sample prevented 

us from obta in ing a s u i t a b l e  sample 

Although t h e  w i r e s  suspended i n  t h e  mold 

In  o the r  tests, w e  placed 

We attempted t o  prepare  another g l a s s  sample using a chromel- 

Because of t h e  high melting po in t  of t h e  pumice and b a s a l t  samples, 

w e  were unable t o  prepare adequate s o l i d  samples of these  materials 

L i t e r a tu re  data  w i l l  be used t o  estimate t h e  s o l i d  conduction contribu-  

t i o n  f o r  these  materials and f o r  quar tz  

Using the  techniques described earlier, w e  analyzed t h e  e f f e c t s  of 

a x i a l  hea t  l o s se s  and sample s i z e  f o r  t h e  l i n e  heat  source method with 

s o l i d  g l a s se s  

would be neg l ig ib l e  f o r  experimental  t i m e s  of 4-5 minutes f o r  t h e  4 x 4 x 

10 cm sample 

t h e  r e s u l t s  u n t i l  a f t e r  5 o r  6 minutes 

The r e s u l t s  indica ted  t h a t  t h e  e f f e c t s  o f  sample boundaries 

Axial heat  flow i n  t h e  sample would not  s e r ious ly  a f f e c t  

r 
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Experiments were c a r r i e d  out  us ing  a 24 v o l t  b a t t e r y  power supply, 

and t h e  ins t rumenta t ion  and technique described above f o r  powder samples 

All measurements were made a t  atmospheric pressure .  
mersed i n  a Dewar  f l a s k  containing a s t i r r e d  f l u i d  f o r  temperature con t ro l  

during measurements 

The sample was  i m-  

Data were reduced from p l o t s  of  temperature rise versus logari thm 

t i m e ,  

method i s  appl icable .  
Because of t h e  high d i f f u s i v i t y  of t h e  g l a s s ,  t h e  logari thmic 

c Vesicular  Samples 

The p r i n c i p a l  ve s i cu l a r  material examined i n  t h i s  study was pumice 

Several  at tempts w e r e  made t o  prepare a ve s i cu l a r  g l a s s  by s i n t e r i n g  t h e  

g l a s s  bead powder, but t h i s  approach was not  u se fu l  u n t i l  l a r g e  p a r t i c l e  

s i z e s  were used The thermal conductivi ty probe method was chosen t o  

study t h e  ve s i cu l a r  material Analysis  of t h e  i n i t i a l  t i m e  l a g  e r r o r s  and 

a x i a l  hea t  f low e r r o r s  w a s  c a r r i ed  out p r i o r  t o  t h e  design of t h e  probe 

The r e s u l t s  ind ica ted  t h a t  a probe 6 i n  long and 1/16 i n ,  diameter would 

be s u i t a b l e  f o r  t h e  measurements. 

f a c t o r i l y  i n  our earlier work (Wechsler and Glaser, 1964) 

t h e  extremes of temperature and vacuum t o  be used i n  t h e  program, w e  

i nves t i ga t ed  t h e  p o s s i b i l i t y  of using a swaged and sheathed probe con- 

s t r u c t i o n  similar to t h a t  used i n  commercially ava i l ab l e  pro tec ted  
thermocouple assemblies 

f o r  a s t a i n l e s s  steel sheath,  MgO in su l a t ed  probe 1/16 i n  

6-1/2 in .  length was evolved 

running t h e  l eng th  of t h e  probe and e i t h e r  a chromel-alumel o r  copper- 

constantan thermocouple at t h e  center .  

could be  baked o u t  a t  4OOOC i f  des i red  

This type  of probe w a s  used satis- 

Because of 

After d iscuss ion  with manufacturers, a design 

diameter,  

The probe would conta in  a "U" shaped hea t e r  

With t h i s  cons t ruc t ion  t h e  probes 

Severa l  probes w e r e  ordered from Conax Corporation, and a four 
month de l i ve ry  w a s  requi red  f o r  t h i s  s p e c i a l  order.  

were received,  s eve ra l  d i f f i c u l t i e s  were encountered. 

l oca t i ons  w e r e  on ly  2 i n  

t h e  i n t e r n a l  wires w e r e  shor ted  t o  t h e  shea th  

f o r  r e p a i r .  

When t h e  probes 

The thermocouple 
from t h e  upper end of t h e  probe and s eve ra l  of 

Two probes were re turned  
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In order  not  t o  delay t h e  program, a modified probe w a s  constructed 

and used f o r  room temperature measurements a t  pressures  of t o  IOm5 
t o r r  The probe consis ted  of a 0 023 i n  (0,058 cm) diameter s t a i n l e s s  

steel hypodermic tube, 10 in .  (25 4 cm) long A b u t t  welded copper- 

constantan thermocouple (#40 wire)  w a s  pul led  through t h e  s t a i n l e s s  s tee l  

tube a f t e r  t he  tube had been drawn through a block of pumice with 

dimensions of approximately 25 4 x 1 4  x 24 cm Current leads  and vol tage  

leads  were a t tached t o  t h e  ends of t he  s t a i n l e s s  s t e e l  tube ,  Thus, t he  

tube  i t s e l f  formed the  heater  and contained the  temperature sensor  The 

sample w a s  placed on a vacuum t ab le ,  covered with a b e l l  jar ,  and evacu- 

ated  t o  pressures  i n  t he  t o r r  range Probe tests were ca r r i ed  out 

a t  s eve ra l  power l e v e l s ,  using t h e  ins t rumenta t ion  described earlier 

The r e s u l t s  of these  i n i t i a l  tests were disappointing The t i m e -  

temperature rise da t a  could not be co r r e l a t ed  e a s i l y  by the  logarithmic 

o r  the  curve matching method The l i n e a r  r e l a t i o n  between temperature 

rise and logarithm of t i m e  ex i s t ed  f o r  only a few minutes r a t h e r  than 

t h e  long times expected Furthermore, when the  d a t a  w e r e  reduced as w e l l  

a s  poss ib le  using e i t h e r  of t hese  methods, t he  conductivity values w e r e  

not  reproducible,  and they were a t  least an order of magnitude lower then 

expected Two sources of e r r o r  may have been poor contac t  of t h e  probe 

and the  sample o r  t he  thermocouple and t h e  sample and r e s u l t a n t  a x i a l  

heat  l o s se s .  The r e s u l t s  obtained i n  the  f i r s t  f i v e  tests ca r r i ed  out 

at  pressures  of 1.6 t o  3 8 x t o r r ,  w i t h  t he  d a t a  reduced by both 

methods are shown i n  Table IV- 6 

Two tests were then ca r r i ed  out a t  atmospheric pressure  wi th  dry 

n i t rogen 

values of 1 29 x and 1 , 3 1  x watt/cm°C The d a t a  were w e l l  re- 

presented by a l i n e a r  temperature rise- logarithm t i m e  r e l a t i onsh ip  and 

the  r e s u l t s  were i n  agreement wi th  our previous pumice measurements In 

an attempt t o  improve t h e  contac t  between t h e  s t a i n l e s s  steel  heater  and 

the  sample, a l a r g e r  0.035 i n .  diameter tube was  i n s e r t e d  i n  t h e  same 

hole i n  t h e  sample, a new copper-constantan couple was used, and two 

add i t i ona l  tests were ca r r i ed  out.  

5 7 x and 2.0 x watt/cm°C. Because these  values were a l so  

Test r e s u l t s  a t  widely d i f f e r e n t  power l e v e l s  gave conductivity 

The conduct iv i ty  va lues  obtained were 
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TABLE IV-6 

RESULTS OF THERMAL CONDUCTIVITY MEASUREMENTS OF 
PUMICE USING 0.023" DIAMETER PROBE 

Thermal Conductivity (watt/cm"C) 
Test Heater Power (mw) Curve Matching Logarithmic Method - 
F-1 18.9 2.6 3.0 

F-2 19.9 1.9 2.1 

F- 3 14.2 1 9 2.3 

F- 4 8 3  2.1 2.4 

F-5 12 0 2.0 2.2 
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lower than expected and not  reproducible,  w e  replaced t h e  probe with a 

0 032 i n  diameter s t a i n l e s s  steel sheath which contained a #40 hea t e r  

w i r e  folded 8 t i m e s  w i th in  t h e  tube  A copper-constantan thermocouple 

w a s  used again. A s  shown i n  Table IV-7, poor test r e s u l t s  w e r e  again 

obtained. 

The r e s u l t s  could not be explained o the r  than on t h e  b a s i s  t h a t  t h e r e  

w a s  poor contac t  between the  probe and sample o r  t h a t  t he  pumice has a 

very low conduct iv i ty  i n  vacuum. Previous test measurements discount t he  

la t ter  p o s s i b i l i t y  Extensive pumice measurements w e r e  c a r r i ed  ou t  i n  

our  previous work and those r e s u l t s  w i l l  be used later i n  t h e  d iscuss ion.  

4. Experimental Results 

The r e s u l t s  of t he  thermal conduct iv i ty  measurements of powders and 

s o l i d  g l a s s  are shown i n  Table IV-8 and i n  Figures IV-5 through IV-8 

Data a r e  p l o t t e d  as e f f e c t i v e  thermal conduct iv i ty  versus  absolute  tem- 

pera ture .  The curves drawn through the  da t a  po in t s  are least square 

l i n e s  based upon appropr ia te  t h e o r e t i c a l  models 

s ec t ion  ) 

r i a l  

(See d iscuss ion i n  next 

Also shown i n  t h e  f i gu re s  a r e  l i t e r a t u r e  d a t a  f o r  each mate- 

The dens i ty  and p a r t i c l e  s i z e  have been indica ted  

Examination of t he  f i gu re s  shows t h a t  t h e  s c a t t e r  of t h e  d a t a  is 

genera l ly  wi th in  t he  r ep roduc ib i l i t y  of t he  l i n e  heat  source method As 
mentioned previous ly ,  w e  have estimated t h e  accuracy of t h e  method t o  be 

b e t t e r  t h a n k  8% The r ep roduc ib i l i t y  of t h e  da t a  po in t s  should be b e t t e r  

than 2 5% (rt 4% f o r  e r r o r  i n  curve matching and t 1% i n  power measurement) 

"Error bars"  corresponding t o  f. 8% a r e  shown on the  curves Several  da ta  

po in t s  which d i f f e r  s i g n i f i c a n t l y  from t h e  o the r s  are usual ly  t h e  r e s u l t s  

of tests made at  t h e  completion of t h e  thermal cycle  

5 Discussion and I n t e r p r e t a t i o n  of Results 

a. Comparison wi th  L i t e r a t u r e  Data 

In genera l ,  good c o r r e l a t i o n  with l i t e r a t u r e  da t a  is shown i n  t he  

f i gu re s  

t he  values repor ted  f o r  similar s i z e  and dens i ty  beads by Watson (1964) 

The values  obtained f o r  t he  Microbeads a r e  wi th in  about 20% of 
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TABLE IV-7 

RESULTS OF THERMAL C0NZ)UCTIVITY MEASURENENTS OF 
PUMICE USING 0.032" DIAMETER PROBE 

T e s t  

- 

J- 1 

5-2 

5-3 

5-4 

J- 5 

J- 6 

Thermal Conductivity (watt/cm"C) 
Pressure  Heater Power Curve Matching Logarithmic Method 

( t o r r )  ( m a t t )  

1 52.0 3.4 4 30 

1 12.2 3 5 3.80 

1 25.1 3 6 x lo-' 3.90 

5 x 48.3 4 3 5.00 

760 112 0 1 47 

760 58.3 - 1 39 
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Also t h e  shapes of t h e  curves a r e  very s i m i l a r  Data repor ted i n  our 
previous work on "3M" g lass  beads of s i m i l a r  s i z e  a r e  about twice t h e  

values  obta ined i n  t h i s  work 

l i n e s s  of the  ma te r i a l  used i n  t h e  present  work o r  a d i f f e rence  i n  com- 

pos i t ion .  

This may be a r e s u l t  of t h e  g rea te r  clean-  

Data on crushed quar tz  a r e  wi th in  25% of t h a t  repor ted by Watson 

(1964) 

d i f f e r e n t  

r e s u l t  i n  a l a r g e r  s o l i d  conduction and smal ler  r a d i a t i o n  contr ibut ion 

which could account f o r  t h e  displacement of our curve from Watson's curve. 

The shapes of t h e  curves a r e  s i m i l a r  up t o  300'K but  diverge above t h i s  

range 

We no te  t h a t  the  p a r t i c l e  s i z e  and d e n s i t i e s  a r e  considerably 

The smal ler  s i z e  powder used i n  the  present  experiment could 

Data on pumice powder are only i n  f a i r  agreement with t h a t  given i n  

our previous work. Difference i n  p a r t i c l e  shape, s i z e  d i s t r ibu t ion ,and  

composition ( the  powders were ground from two s i m i l a r  samples but not 

necessa r i ly  of t h e  same composition) could account f o r  t h e  d i f f e rences  

We note  t h a t  the  e f f e c t  of temperature f o r  both types of samples is near ly  

t h e  same. 

Data on b a s a l t  powder a r e  i n  reasonable agreement wi th  t h a t  reported 

e a r l i e r  although the  t rend i n  decreasing conduct ivi ty  with increas ing 

p a r t i c l e  s i z e  does not seem t o  hold when t h e  present  d a t a  a r e  compared t o  

the  previous work. 

ing method,and t h e  lower pressure  i n  the  present  work. 

the  t rend of increas ing conduct ivi ty  with temperature.  

Barnet t ,  e t  a 1  

show a s l i g h t l y  g r e a t e r  temperature e f f e c t  

Discrepancies may be due t o  t h e  type of b a s a l t ,  grind- 

All mate r i a l s  show 

The da ta  of 

(1963) a r e  i n  f a i r  agreement with t h e  present  work but  

Data f o r  t h e  s o l i d  g las s  a r e  i n  exce l l en t  agreement with t h e  manufac- 

t u r e r ' s  value. 

conduct ivi ty  

comparison wi th  Pyrex and fused quar tz  

Pyrex 

There is e s s e n t i a l l y  no e f f e c t  of temperature on thermal 

The da ta  have also been p l o t t e d  i n  Figure IV- 1 t o  show the  
The values  a r e  c lose  t o  those of 
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b Evaluation of Heat Transfer  Mechanisms 

(1) Experimental Evaluation. Evaluation of t he  contr ibut ions  

of s o l i d  conduction and thermal r a d i a t i o n  t o  e f f e c t i v e  thermal conduc- 

t i v i t y  may be ca r r i ed  out  by ana lys i s  of t h e  e f f e c t s  of temperature on 

thermal conduct iv i ty .  A s  discussed previous ly ,  t h e  s o l i d  conduction con- 

t r i b u t i o n  i n  a powder is  a funct ion  of the  p a r t i c l e  s i z e ,  packing, loading, 

and other  f a c t o r s ,  as w e l l  as the  thermal conduct iv i ty  of the  s o l i d  

s o l i d  conduction contr ibut ion  a t  any temperature can be represented as 
The 

k = F (p, d ,  load,  etc ) x ks (IV-36) c 1  

where F1 (p, d,  load,  e t c . )  represents  t he  unknown funct ion  of p a r t i c l e  

parameters,and k 

d i r e c t  p ropor t iona l i t y  on t h e  conductivity of t h e  ma te r i a l  from which t h e  

powder is prepared A s  shown i n  Figure IV-1, t h e  bulk  s o l i d  conduct iv i ty  

v a r i e s  with temperature i n  a manner which depends upon t h e  type of s o l i d  

For g l a s se s ,  t he  s o l i d  conduct iv i ty  genera l ly  has one of t he  following 

forms: 

i s  t h e  bulk s o l i d  conduct iv i ty  We have assumed a 

g lass :  k = constant = B' (IV-37 

o r  k = B '  + C'  T ( IV- 38) 

I n  c r y s t a l l i n e  materials, t h e  conduct iv i ty  (over t he  temperature range w e  

are considering) may o f t en  be  represented by- 

D '  
k = B ' + -  T (IV-39) 

Thus, t h e  s o l i d  conduction contr ibut ion  t o  e f f e c t i v e  conduct iv i ty  may 

have any of the following forms: 

k = F  B ' = B  c 1  (IV-40) 
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I 

kc = F1 (B' + C' T) = B + C T (IV- 4 1) 

k = F1 (B' +x) = B + g  
T T (IV-42) 

The r a d i a t i o n  con t r i bu t i on  t o  thermal conduct iv i ty ,  as discussed 

earlier i n  t h i s  s e c t i o n ,  o f t e n  has t h e  form: 

(IV-43) 3 k = AT 

Thus, t h e  e f f e c t i v e  conductivi ty of a powder may be  represented by any 

of t h e  following equations: 

3 Mode l1  ke = kc + kr = B + AT (IV-44) 

Model 2 = B + CT + AT3 (IV-45) 

Model 3 = B + $ + AT3 ( IV-46)  

Models 1 and 2 should be  r ep re sen t a t i ve  of a powder prepared from a 

g l a s sy  material with l i t t l e  o r  no temperature coe f f i c i en t  of conductivi ty 

Model 3 

material wi th  a s t rong  temperature coe f f i c i en t  

be pos i t i ve  ( i .e  , t h e  r a d i a t i o n  term and t h e  s o l i d  conduction should 

both be p o s i t i v e  at low temperatures) 

o r  negative,  depending on t h e  type of g l a s s ;  p o s i t i v e  va lues  of C i n d i c a t e  

a conductivi ty i nc r ea se  wi th  temperature, p o s i t i v e  values of D i n d i c a t e  a 

conductivi ty decrease wi th  temperature. 

is more r ep re sen t a t i ve  of a powder prepared from a c r y s t a l l i n e  

The terms B and A should 

The terms C and D may be  pos i t i ve  

The experimental  d a t a  w e r e  f i t t e d  by least squares techniques t o  t h e  

equations f o r  each model given above The values of the  coe f f i c i en t s  and 

t h e  root  mean square  devia t ions  were examined t o  e s t a b l i s h  which model 

b e s t  represented t h e  d a t a  

Glass beads. On t h e  b a s i s  of experimental da t a  f o r  s o l i d  g l a s s  (see 

Figure IV-8), i t  w a s  clear t h a t  Model 1 o r  Model 2 would be  more appropr ia te  

102 

2lrthur D.XittIr.3nr. I 



than Model 3 

c o e f f i c i e n t s  f o r  C and A,  thereby ind ica t ing  t h a t  Model 1 w a s  more appro- 

p r i a t e .  Values of t he  c o e f f i c i e n t s  using Model 1 w e r e :  B = 4.66 x 

watt/cm°C and A = 2.99 x Watt/Cm"K . The standard devia t ion  of the  

d a t a  from t h i s  least squares l i n e  w a s  12%.  Using these  values,  t h e  s o l i d  

conduction con t r ibu t ion  i s  4 66 x 

t r i b u t i o n  is 2.99 x 

f o r  similar s i z e  powder were B = 7 0 x watt/cm°C and A = 3 4 x 10 

watt/cmoX (see  Table IV-3)  The agreement between our r e s u l t s  and 

Watson's is very good, 

t he  value of t h e  s o l i d  conduction contr ibut ion  and t h a t  ca lcula ted  from 

t h e  model described e a r l i e r  i n  t h i s  s ec t ion  The r a t i o s  of t he  r a d i a t i o n  

t o  s o l i d  conduction contr ibut ion  a t  s eve ra l  temperatures a r e  shown i n  

Table IV- 9 

The l e a s t  squares f i t  using Model 2 r e s u l t e d  i n  negat ive  

4 

watt/cm°C, and t h e  r a d i a t i v e  con- 

T 3  watt/cm°C Values obtained by Watson (1964) 
-13 

4 

We a l s o  note t h a t  t he re  is good agreement between 

Quar tz  pow-. From examination of t h e  da t a  on s o l i d  qua r t z ,  i t  w a s  

apparent t h a t  Model 3 should bes t  correspond t o  t h i s  powder The l e a s t  

squares ana lys i s  showed t h a t  t he  root  mean square devia t ions  of t h e  d a t a  

were 5%, 3%, and 2% f o r  Models 1, 2, and 3 ,  respect ive ly .  However, t h e  

coe f f i c i en t s  obtained f o r  Model 2 were unreasonable Values f o r  the  

c o e f f i c i e n t s  using Model 3 were: B = 37.5 x loW6 watt/cm°C, D = - 2 165 x 
4 wattlcm, and A = 1 53 x w a t t / c m a K  These values i n d i c a t e  

t h a t  the  s o l i d  conduction con t r ibu t ion  increases  wi th  increas ing tempera- 

tu re ;  t h i s  tendency is  not expected of c r y s t a l  qua r t z  but  is representa-  

t i v e  of fused quar tz  For crushed quar tz  of a l a r g e r  s i z e ,  Watson obtained 

a value of 33.5 x watt/cm°C f o r  t he  s o l i d  conduction contr ibut ion  

This compares with values  of 26.8 x 10 

w a t t / c m ° C  a t  temperatures of 200, 300, and 4OO0K, r e spec t ive ly ,  using 

Model 3 I f  Model 1 is  accepted,  t h e  value  of B is 25 2 x 

The high value  of t he  s o l i d  conduction con t r ibu t ion  may be caused by t h e  

high conduct iv i ty  of c r y s t a l l i n e  quar tz  

term A w a s  4.2 x 
watt/cm°K4 we obtained using Model 3 and t h e  value of 3.03 x 

cm°K4 obtained using Model 1, 

-6 , 30 3 x loV6, and 32 1 x 

watt/cm"C. 

Watson's va lue  of t h e  r ad i a t ive  
-13 w a t t / c m ° K 4 ,  compared with t h e  value of 1 53 x 10 

w a t t /  
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On the  b a s i s  of t h i s  comparison, i t  appears t h a t  Model 1 is a b e t t e r  

r ep re sen ta t ion  of t h e  quar tz  powder In  Figure IV-5, l e a s t  squares l i n e s  

f o r  both Model 1 and Model 3 a r e  drawn 

be compared t o  those ca l cu l a t ed  e a r l i e r .  

w e  ca l cu l a t ed  a maximum kr of about 60 x 

t o  t he  appropr ia te  po ros i ty )  

The r ad i a t ive  contr ibut ions  may 

For t h e  qua r t z  powder a t  400°K 

watt/cm"C (ext rapola ted  

The experimental value a t  400'K was 19 3 x 

watt/cm"C Although the  agreement is not  exce l l en t ,  t he  ca lcula ted  

value  is t h e  upper l i m i t  which would be  f u r t h e r  reduced by s c a t t e r i n g  

The f a c t  t h a t  some of t he  p a r t i c l e s  were comparable t o  t h e  wavelength 

would a l s o  tend t o  reduce the  ca lcula ted  value Re la t ive  values of t h e  

r a d i a t i v e  and s o l i d  conduction contr ibut ions  to  thermal conduct iv i ty  a t  

s eve ra l  temperatures a r e  shown i n  Table IV-9 

Pumice powders. Data f o r  pumice powders were b e s t  f i t t e d  by using 

Model 1 When Models 2 and 3 w e r e  used, no appreciable reduction of the  

room mean square devia t ion  was observed, and the coe f f i c i en t s  C and D 

were not cons i s t en t  with t h e  temperature coe f f i c i en t  of ves i cu l a r  pumice 

o r  s o l i d  g l a s s  For t he  10-37p pumice powder, B and A were 5 09 x 

watt/cmeC and 3 12  x watt/cm°K , respect ive ly  For t he  44-74p 

pumice, B and A were 2 51 x loe6  watt/cm°C and 3 . 5 7  x 

respect ive ly .  

da t a  Thus t h e  s o l i d  conduction con t r ibu t ion  decreased f o r  the  l a r g e r  

p a r t i c l e  s i z e  ( i n  agreement w i th  Watson's d a t a ) ,  bu t  t h e  r ad i a t ive  term 

increased only s l i g h t l y .  We no te  t h a t  t he  conduction term 1 s  much smal ler  

than i t  is €or quar tz  and is  comparable t o  t h a t  f o r  g l a s s  beads 

4 

watt/cmaK4, 

The root  mean square  dev ia t ions  were 8% f o r  both sets of 

Basalt powder. Data f o r  t he  10-37p b a s a l t  powder w e r e  b e s t  f i t t e d  by 

Model 3 .  Values of t he  c o e f f i c i e n t s  were: B = 20-6  x watt/cm°C, 

D = -1.57 x watt/cm, and A = 0.88 x watt/cm°K4 The rms de- 

v i a t i o n  w a s  2 7% (compared t o  13% f o r  Model l) Thus t h e  s o l i d  conduc- 

t i o n  con t r ibu t ion  increases  with temperature 

powder were b e s t  f i t  by Model 1 with  coe f f i c i en t s  B = 6.14 x 
4 and A = 2 14 x w a t t / c m ° K  ; and an rms devia t ion  of 9% Thus the  

s o l i d  conduction con t r ibu t ion  decreases with increas ing p a r t i c l e  s i z e ,  

and t h e  r a d i a t i o n  contr ibut ion  increases  with increas ing p a r t i c l e  s i z e  

Data f o r  44-74p b a s a l t  

watt/cm°C 
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Sol id  E l a s s .  The d a t a  f o r  t h e  s o l i d  g l a s s  were w e l l  represented by 

t h e  equation: 

ke = B + CT (IV-47) 

where B = 0 845 x 

an rms devia t ion  of 6.6% 

w a t t / c m ° C  and C = 0 537 x w a t t / c m ° C 2 ,  wi th  

The contr ibut ions  of s o l i d  conduction and r a d i a t i o n  f o r  t h e  materials 

s tudied  are a l s o  summarized i n  Table IV-9. 

served are: (1) an inc rease  i n  r a d i a t i v e  con t r ibu t ion  with increased 

p a r t i c l e  s i z e ,  ( 2 )  a decreased conduction contr ibut ion  with increased 

p a r t i c l e  s i z e ,  (3) t he  r e l a t i v e l y  high values  f o r  s o l i d  conduction f o r  

qua r t z  and b a s a l t  powders, (4) t h e  low r a d i a t i v e  con t r ibu t ion  f o r  t h e  

smal l  diameter b a s a l t  powders, and (5) t h e  r a t i o  of r a d i a t i v e  t o  conduc- 

t i o n  con t r ibu t ion  f o r  t h e  powders s tudied  inc reases  wi th  temperature and 

has values from 0 05 t o  9 1 over t he  temperature range of 200 t o  400°K 

The important t rends  t o  be ob- 

(2) Analyt ica l  Evaluation,  Theore t ica l  models f o r  t he  radi-  

a t i o n  con t r ibu t ion  t o  thermal conduct iv i ty  i n  a p a r t i c u l a t e  o r  f i b rous  

material prepared by var ious  i nves t iga to r s  have the  form given by equa- 

t i o n  IV-43. The values  of t he  constants  are given below 

A = 4 u s D  6 Damkohler (1937) 

A = 4 u E D (6-' - + 61f3) Russel l  (1935) 

A = 413 u D Rosseland (1936) 

A = 413 (J D ( f o r  f i b e r s )  Strong, e t  a1 (1960) 

P 

P 

P 

P E  

Godbee and Ziegler  (1966) 6 ~ = 4 n ~ u ~  €1-6 
r p  

A a 4 5 ~ D  Schotte (1960) 
P 
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where 

G = Stefan-Boltzman constant  

E = p a r t i c l e  emittance 

D = p a r t i c l e  diameter 
P 
6 = poros i ty  

n = r e f r a c t i v e  index 

Values of t h e  r a d i a t i o n  constant  term f o r  t he  powders i nves t iga t ed  

shown i n  Table I V  10 a r e  genera l ly  lower than those obtained by experi-  

mental f i t  of t h e  da t a ,  One reason f o r  t he  d i f f e r ence  i n  values i s  t h a t  

t he  o p t i c a l  mean f r e e  path  i n  t h e  expressions given above is assumed t o  

be equal t o  t h e  product of t he  p a r t i c l e  diameter and a poros i ty  f a c t o r  

For mater ia ls  which are p a r t i a l l y  t ransparent ,  as  quar tz  and g l a s s  are i n  

the  wavelength region of 0 5-5u, t h e  mean f r e e  path may be s i g n i f i c a n t l y  g rea t e r  

than a par t ic le  diameter. Furthermore, only the equation of Godbee and 

Ziegler  co r r ec t ly  includes t h e  index of r e f r ac t ion ,  Closes t  agreement 

of t he  experimental da t a  i s  obtained with t h e  predic ted  values of Godbee 

and Ziegler  Var ia t ions  i n  t h e  index of r e f r a c t i o n  and t h e  inco r rec t  

use of an average value can account f o r  t he  discrepancy between the  pre-  

d ic t ions  and experiment. 

We have ca lcula ted  the  r a d i a t i v e  conductivity f o r  quar tz  a t  400"K, 

according t o  t he  method ou t l i ned  i n  Section I V ,  E ,  2 ,  f The value ob- 

ta ined f o r  powder of 62% poros i ty  i s  6.0 x 

This value compares with t h a t  of 3 . 3 3  x 10 

the  Godbee and Ziegler  c o r r e l a t i o n ,  and t h a t  of 1 94 x lom5 watt/cm°C 

obtained experimentally.  The s i g n i f i c a n t  d i f f e r ence  between the  r e s u l t s  

of the  s imp l i f i ed  c o r r e l a t i o n  and t h e  more complex ca l cu l a t ion  procedure 

ind ica t e s  t h e  e f f e c t s  of taking i n t o  account t h e  v a r i a t i o n  of o p t i c a l  

cons tants  with wavelength and the  d i s t r i b u t i o n  of t h e  s o l i d  phase mate- 

r ia l ,  The experimental value i s  lower than the  value  w e  ca lcula ted  be- 

cause the  method used i n  Sect ion  I V ,  B, 2, f does not inc lude  s c a t t e r i n g  

which w i l l  f u r t h e r  reduce the  r ad i a t ion  heat  t r a s n f e r  con t r ibu t ion ,  

watt/cm°C a t  400°K 

watt/cmoG, evaluated from -6 
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The s o l i d  conduction contr ibut ions  t o  e f f e c t i v e  thermal conduct iv i ty  

have been evaluated by t h e  method proposed by Watson (19641 and described 

i n  111, B ,  2 For a m a t e r i a l  with e l a s t i c  modulus E (dyneslcm ) ,  and 

Poisson 's  r a t i o  v, t he  r a t i o  of s o l i d  conduction i n  t h e  powder t o  s o l i d  

conduction i n  t he  bulk may be wr i t t en  as: 

2 

113 
b-2/3 p o R ( 1 - q  

(IV-48) - -  kc E 

kb 'iZb i-1/3 

i=l 

where L i s  the  p a r t i c l e  depth, b i s  t h e  p a r t i c l e  r ad ius ,  p is the  bulk 

dens i ty ;  and g i s  the  acce l e ra t ion  due t o  gravi ty  Using ava i l ab l e  da t a  

f o r  t h e  moduli and s o l i d  thermal conductivity (Birch,  1942),  t h e  values 

of s o l i d  conduction contr ibut ion  of the  powder shown i n  Table IV-11 were 

evaluated f o r  a temperature of 300°K 

As noted on Table I V- 1 1 ,  and i n  t he  work of Watson, p a r t i c l e  s i z e  

has l i t t l e  e f f e c t  on t h e  s o l i d  conduction con t r ibu t ion  ca lcula ted  from 

the  equation given above The high value  f o r  qua r t z  is caused by t h e  

high thermal conduct iv i ty  at  300'K. Except f o r  t h e  agreement between 

t h e  measured and ca lcula ted  values f o r  the  smal ler  s i z e  b a s a l t  powder, 

t h e  experimentally obtained values of t he  contact  conduction are lower 

by a f a c t o r  of 2 t o  5 than those  ca lcula ted  

t h a t  a d e t a i l e d  understanding of contact  r e s i s t ance  between p a r t i c l e s  

has  not y e t  been e s t ab l i shed .  To inc rease  our understanding, add i t i ona l  

analyses of t he  s o l i d  conduction con t r ibu t ion  must be performed 

add i t i on ,  experimental  measurements should be ca r r i ed  out under conditions 

where s o l i d  conduction can be  examined independently of o ther  system 

va r i ab l e s  

These r e s u l t s  i nd i ca t e  

I n  

D ,  CORRELATION OF THERMAL CONDUCTIVITY AND DIELECTRIC CONSTANT 
MEASUREMENTS 

In order t o  evaluate  t he  co r r e l a t i ons  between d i e l e c t r i c  and thermal 

parameters using t h e  r e s u l t s  obtained on t h e  var ious  materials s tudied ,  

we ca lcula ted  t h e  values of t h e  parameter Clwhich,  according t o  equation 

111-31 should be  a constant  and independent of dens i ty  and poss ib ly  o the r  
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TABLE I V- 1 1  

CALCULATED VALUES OF SOLID CONDUCTION CONTRIBUTION OF VARIOUS POWDERS 

kc kc Material S i z e  

P ( e x p e r i m e n t a l )  (calculated) - 
G l a s s  beads 44-62 0.47 x 10” 116 x lo-’ w a t t / c m ° C  

P u m i c e  44-74 o 5 1  1.37 11 

P u m i c e  10-37 0.25 1 35 11 

B a s a l t  44-74 o 6 1  1.58 11 

B a s a l t  10-37 1.54 1 56 11 

Q u a r t z  10 2.50 9.49 10-j 11 

I 

1 
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va r i ab l e s .  The r e s u l t s  are shown i n  Table IV- 12  Even though the  ex- 

perimental  evidence presented here concerns only th ree  materials it is  

evident  t h a t  t h e  presumed "constant" Clvaries g rea t ly  wi th  dens i ty  

This cases some doubts on t h e  assumptions made i n  t h e  de r iva t ion  of 

equation 111-31. 

One of these  assumptions was t h a t  of t he  p ropor t iona l i t y  of 6 t o  

t h e  wavelength (equation 111-30). 6 is t h e  r a t i o  of t h e  electromagnetic n 
t o  the  thermal pene t r a t i on  depth as defined by equations 111-3 and 111-24 

While t h e  r a t i o  of 6 n / ~ o  should be independent of wavelength, we f ind  

t h a t  i t  va r i e s  considerably;  i n  pumice powder i t  has  values of 13 and 

9 . 8  at  3 28 and 1.18 cm wavelengths, respect ive ly ,  and i n  b a s a l t  powder 

it has values 10 and 5 , 8  a t  t he  same wavelengths, r e spec t ive ly  

We a l s o  attempted t o  ob ta in  an empir ica l  c o r r e l a t i o n  between d i e l-  

e c t r i c  constant  (or  loss  tangent)  and thermal conduct iv i ty  The r e s u l t s  

w e r e  not s a t i s f a c t o r y .  The c o r r e l a t i o n  between d i e l e c t r i c  constant and 

thermal conduct iv i ty  can e a s i l y  be  evaluated by examining the  e f f e c t  of 

dens i ty  on each of these  parameters. 

d i e l e c t r i c  constant  (3.28 cm) and t h e  l o s s  tangent a t  t h e  same wave- 

length  wi th  dens i ty .  A s  expected from t h e  d iscuss ion presented earlier, 

t h e r e  is  a s t rong  c o r r e l a t i o n  between E '  and dens i ty ;  namely, t h a t  t h e  

logarithm of t h e  d i e l e c t r i c  constant  is propor t ional  t o  dens i ty  A 

similar r e l a t i o n  holds f o r  t h e  l o s s  tangent,  i f  t h e  d a t a  f o r  pumice ( the  

lowest of t h e  l o s s  tangent d a t a  points )  are assumed t o  be  on a s epa ra t e  

curve. 

w e  s tudied  is shown i n  Table IV-13 

Figure IV-9 shows the  v a r i a t i o n  

The dependence of thermal conductivity on dens i ty  f o r  t he  materials 

Although t h e r e  is  a genera l  t rend toward increas ing thermal conduc- 

t i v i t y  wi th  dens i ty ,  t he re  are seve ra l  exceptions;  namely, (1) the  

ves i cu l a r  pumice's having a very low dens i ty  with a moderately high 

conductivity,  (2) t he  i n s e n s i t i v i t y  of thermal conduct iv i ty  wi th  dens i ty  

of the  powders, and (3)  t h e  i nc rease  of thermal conduct iv i ty  o f  over 

1000 with a 3-fold inc rease  i n  dens i ty .  

only by a f a c t o r  of 3 o r  4 f o r  t h e  same densi ty  va r i a t i on . )  

(The d i e l e c t r i c  constant va r i e s  
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Material 

TABLE IV-12 

VALUES OF "CONSTANT" C OF EQUATION 111-31 

Glass, beads 
(P = 1.6 gm/cm ) 

Glass, s o l i d  
(p = 2.8 gm/cm ) 

Basalt, powder 
(p = 1.2-1.4 gm/cm ) 

Basalt, s o l i d  
(p = 2.6-2 8 gm/cm ) 

Pumice, powder 3 
( p  = 0.80-0.90 gm/m ) 

Pumice, ves icu la r*  
(p = 0 4-0.5 gm/cm ) 

Pumice, glass** 3 
(p = 2 , 5  gm/cm ) 

3 

T 

(OK) - 
300 
400 

300 

300 
400 

300 

300 
400 

300 

300 

CI= JF t a n  6 Jklpc 
a t  A = 3.28 cm a t  A = 1.18 cm m 

(cm sec-2> 

6 9 x 2 .8  x 

4 2 x 10:; 2 75 x 10:; 
6 . 1  x 10 4 4  x 1 0  

4 5 x 1.1 

6.5 1.0 

4.2 x 10:: 
7.3 x 10 

not determined 

8 . 2  x 101; 
2 , 8  x 10 I 

not  determined 

4 . o  x 10;; 
9 , 3  x 10 

4.5 

not  determined 

* Thermal conduct ivi ty  d a t a  from previous work (Wechsler, 1964). 
**Thermal conduct ivi ty  of s o l i d  pumice assumed equa l  t o  s o l i d  crown g l a s s  
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TABLE IV-13 

DEPENDENCE OF THERMAL CONDUCTIVITY ON DENSITY 

Measured Thermal Conductivity 
Thermal Conductivity Calculated from 

T r o i t s k i i  Equation Material Density a t  300°K 

(watt/cm"c) (watt/cm"c) 
3 

(gm/cm ) 

Pumice 0.4 -0.5 1 4 

Pumice powder 0.8 1.2-1.4 x 1 7 

3.2-3.5 x 2 1 

1.0-1.8 x 2 . 9  

Glass beads 1.42 1 2 3 .O 

Quartz powder 1 .o 

Basalt powder 136- 1 .43  

2.8 x Sol id  g l a s s  2.5 1 x 

Sol id  b a s a l t  2 8  2-3 x 3 , 1  x lo-* 
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Also given i n  t he  t a b l e  are the  thermal conduct iv i ty  values ca lcula ted  

from t h e  c o r r e l a t i o n s  used by T r o i t s k i i  ( see  Sect ion  I V ,  A ) .  The values 

obtained f o r  t he  ves i cu l a r  and s o l i d  materials are i n  good agreement with 

experimental d a t a  however, ca l cu l a t ed  values  f o r  t he  p a r t i c u l a t e  materials 

are much higher than those  measured This d i f f e r ence  between ca l cu l a t ed  

and measured values  has considerable  bear ing on t he  conclusions reached 

by T r o i t s k i i  concerning t h e  p rope r t i e s  of lunar surface  materials 

Whereas t he  d i e l e c t r i c  constant  is d i r e c t l y  r e l a t e d  t o  dens i ty ,  t h e  

thermal conduct iv i ty  is  apparent ly  more a funct ion  of mechanical s t r eng th ,  

cohesion, o r  state of aggregation of the  mater ia l .  For t h i s  reason w e  

would expect a more adequate c o r r e l a t i o n  of thermal conduct iv i ty  with 

bearing s t r eng th ,  son ic  ve loc i ty ,  o r  o the r  i nd i ca t ions  of t he  s t r u c t u r a l  

p rope r t i e s  of t h e  samples 

E APPLICATION OF THE RESULTS OF POSTULATED LUNAR MATERIALS 

The ob jec t ive  of t h i s  program has  been t o  provide da t a  on t h e  thermal 

conduct iv i ty  and d i e l e c t r i c  constant  of s i l i c a t e  powders and s o l i d s  It 

w a s  not our primary a i m  t o  attempt t o  assess  poss ib l e  lunar  su r f ace  mate- 

rials on t he  b a s i s  of t h e  observat ional  da ta  and measurements made i n  t h i s  

study; however, some of t h e  r e s u l t s  and conclusions w e  have reached have 

d i r e c t  app l i ca t ion  t o  t h e  eva lua t ion  of lunar  materials and poss ib ly  

ma te r i a l s  on o the r  p lanetary  surfaces  

1 The Thermal Parameter (kpC)-1/2 

As discussed i n  Sect ion  I V ,  t he  thermal parameter (kpC)-’’’ i s  o f t e n  

used i n  evaluat ing  luna r  su r f ace  ma te r i a l s  because, f o r  constant  thermal 

p rope r t i e s  and dens i ty  and assumed constant emittance and absorptance,  

t h e  thermal parameter completely s p e c i f i e s  the  s u r f a c e  temperature of a 

semi- inf in i te  material exposed by pe r iod ic  r ad i a t ion  f l u x  The experi-  

mental measurements ca r r i ed  ou t  i n  t h i s  program have shown t h a t  t h e  

assumption of constant  thermal p rope r t i e s  is  not j u s t i f i e d  i n  analyzing 

luna r  temperature data ,  p a r t i c u l a r l y  when powdered materials are consi- 

dered. 

parameter (secl/’ an2 oc/cal)  a t  various temperatures. 

A s  an i l l u s t r a t i o n  Table IV-14 g ives  values of t he  thermal 

I n  ca l cu l a t ing  
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TABLE IV-14 

EFFECT OF TEMPERATURE ON THERMAL PARAMETER 

mermal  Parameter (sec’” cm2 oc/cal)  
Material 200 O K  300’K 4OOOK 

Glass beads 1480 1070 790 

Quartz powder 8 20 790 700 

Pumice powder (14-74~) 2140 1380 970 

Pumice powder (10-3711) 1820 1380 1010 

Basalt powder (44-741.1) 1380 1120 820 

Basalt powder (10-37~) 1080 930 7 70 

Pumice (ves icu lar )  

Sol id  g l a s s  

200 180 160 

31 29 27 

! 

I 
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these  values ,  w e  have assumed the  s p e c i f i c  heat  t o  have t h e  constant value 

of 0 2 cal/gm”C 

Although t h e  value of (kpC)-l/’ f o r  evacuated powders i s  near 1000 

and i n  agreement wi th  most d a t a ,  t h e r e  is a v a r i a t i o n  of over a f a c t o r  

of 2 i n  t he  thermal parameter of some powders over the  lunar  temperature 

range. (Because the  s p e c i f i c  hea t  of most s i l i c a t e s  a l s o  increases  wi th  

temperature,  t h e  a c t u a l  v a r i a t i o n  of t he  thermal parameter would be  

g rea t e r  than t h a t  shown i n  t h e  table . )  We recommend t h a t  i n  a l l  subse- 

quent analyses  of l una r  i n f r a r e d  d a t a  t he  thermal conductivity be  repre-  

sented by a constant  term p lus  a term with a cubic temperature dependence, 

as was done by Linsky (1966) and Chiang (1965) Also, t he  e f f e c t  of t e m-  

pe ra tu re  on s p e c i f i c  h e a t  should not  be overlooked i n  these  analyses 

For s imp l i f i ed  ca l cu l a t ions ,  va lues  of (kpC)-l” of 700-1500 (sec1/2 cm2  

OC/cal) r ep re sen t  most of t h e  powdered ma te r i a l s  we ztudied over t he  range 

of 200 t o  400°K. 

2. Ratio of Radiation t o  Conduction Heat Transfer  

As discussed i n  Section I V ,  Linsky (1966) uses values  of 1 t o  3 f o r  

t h e  r a t i o  of t he  r a d i a t i v e  t o  conductive heat  t r a n s f e r  a t  35OoK The 

r a t i o s  we obtained experimentally a t  350°K were: 

qua r t z  powder, 0.51; pumice powder (10-37~(),  2 63; pumice powder ( 4 4 - 7 4 ~ ) ,  

6 1; b a s a l t  powder (10 -37~) ,  0 23; b a s a l t  powder ( 4 4 - 7 4 ~ 1 ,  1 50 Our 

r e s u l t s  i nd i ca t e  t h a t  t he  range of va lues  used by Linsky should be 

expanded However, t h e  thermal parameter values which we obtained d i f f e r  

by less than 40% from those used i n  Linsky’s ana lys i s .  We recommend t h a t  

i n  subsequent ca l cu l a t ions  values  of radia t ive /conduct ive  f l ux  of about 

0 3 t o  6 be used, depending upon the  powder s i z e  and composition 

3 Lunar Surface  and Subsurface Temperatures 

The su r f ace  and subsurface  temperatures of t h e  moon may be  ca lcula ted  

g l a s s  beads, 2 75;  

using the  thermal conduct iv i ty  da t a  presented i n  t h i s  r epo r t  and estimates 

of the  emittance and absorptance of t h e  lunar  su r f ace  A s  an example, we 

have ca lcula ted  the  su r f ace  temperatuare f o r  a homogeneous p a r t i c u l a t e  

surface  and a homogeneous ves i cu l a r  su r f ace  (see  Figure  IV-10) 

prope r t i e s  used i n  t h e  ca l cu l a t ions  w e r e :  

The thermal 
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k (watt/cmaKl p (m/ c m  3, C (joules/gm'K) 

Powder 4 62 x + 3 05 x T3 1 1  0.502 + 7.4 x T 

Vesicular  1 5 x + 0.2 x T 0.9 o 502 + 7.4 x T 

where T is i n  O K  

Values of i n f r a r e d  emittance and s o l a r  absorptance were chosen a s  

0.93 (These ca l cu l a t i ons  w e r e  performed i n  another program c a r r i e d  out  

a t  Arthur D. L i t t l e ,  I n c  Details of t h e  computation program may be  ob- 

t a ined  i n  t h e  r e p o r t ,  "A Study of Thermal Response of t h e  Lunar Surface 

a t  t h e  Landing S i t e  during t h e  Descent of t h e  Lunar Excursion Module (LEM)", 

Technical  Report prepared by J T Holland and H. C Ingrao,  Harvard 

College Observatory, Cambridge, Massachusetts, Apr i l  1, 1966 ) 

Although t h e  s u r f a c e  temperatures obtained from ca l cu l a t i ons  wi th  

t h e  powder p rope r t i e s  are not  exact  dupl ica t ions  of observa t ional  d a t a ,  

t h e  maximum and minimum temperatures and t h e  s l ope  of t h e  temperature- 

time curve during lunar  n igh t  are i n  r e l a t i v e l y  good agreement with 

published data.  

from those  obtained wi th  materials having constant  thermal proper t ies  

The curves presented he r e  would d i f f e r  considerably 

4.  D i e l e c t r i c  Constant Values 

The values of  t h e  d i e l e c t r i c  constant  obtained i n  t h i s  program may 

be considered t y p i c a l  f o r  s i l i c a t e  powders 

l y s i s  and eva lua t ion  of r ad io  emission d a t a  from s i l i c a t e  p a r t i c u l a t e  

sur faces ,  values of 2.0 t o  2 9 be used f o r  t h e  real p a r t  of t h e  d i e l e c t r i c  

constant  and values of 0.004 t o  0.015 be  used f o r  t h e  loss  tangent The 

v a r i a t i o n  of t h e  d i e l e c t r i c  cons tan t  and loss tangent wi th  dens i ty  shown 

i n  Figure IV-9 and t h e  t rend  of increas ing  loss tangent with temperature 

as shown i n  Table 111-2 and 111-3 should be  considered when examining 

rad io  emission d a t a  i n  d e t a i l .  

We suggest  t h a t  i n  t h e  ana- 
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V. CONCLUSIONS 

On t h e  b a s i s  of t h e  r e s u l t s  presented i n  the  preceding sec t ions ,  w e  

have made the  conclusions which are d e t a i l e d  below 

A DIELECTRIC CONSTANT 

1. The d i e l e c t r i c  constants  of t he  s i l ica te  powders w e  s tudied  a t  

3 28 cm and 1.18 cm wavelengths have values  ranging from 1 . 9  t o  2 9 

The l o s s  tangents  of these  ma te r i a l s  vary from about 0.004 t o  0 030. 

The d i e l e c t r i c  constants  of t he  s o l i d  s i l i c a t e s  from which the  powders 

were prepared are i n  t h e  range 5.4-8.6. 

2.  There is no s i g n i f i c a n t  d i f f e r ence  i n  t h e  d i e l e c t r i c  constant 

of t he  powders a t  t he  two wavelengths studied.  The loss tangents of t he  

powders are l a r g e r  a t  t he  s h o r t e r  wavelength 

3 The e f f e c t  of temperature on t h e  real p a r t  of t h e  d i e l e c t r i c  

constant  of t h e  powders is neg l ig ib l e  over t h e  range 77°K t o  400°K 

imaginary p a r t  of t he  d i e l e c t r i c  constant  and t h e  loss tangent tend t o  

increase  a t  the  upper temperature l i m i t  of  t h i s  range, p a r t i c u l a r l y  f o r  

b a s a l t  powders. 

The 

4.  The dependence of t h e  d i e l e c t r i c  constant of t he  powders on 

densi ty  is adequately represented by t h e o r e t i c a l  formulas which relate 

t h e  d i e l e c t r i c  constant t o  t h e  f r a c t i o n  of t he  s o l i d  and the  d i e l e c t r i c  

constant of t he  so l id .  

5. There is no w e l l  def ined c o r r e l a t i o n  between thermal conduct iv i ty  

and d i e l e c t r i c  constant  of t h e  s i l ica te  powders The c o r r e l a t i o n  pro- 

posed by T r o i t s k i i  does not  hold f o r  t he  powders and s o l i d s  w e  s tudied  

6. I f  t h e  d i e l e c t r i c  p rope r t i e s  of t h e  lunar  su r f ace  are similar t o  

those of t he  minerals and powders s tudied  i n  t h i s  work, t h e  penet ra t ion  

depth of microwaves is much g r e a t e r  than the  thermal pene t r a t i on  depth 

(approximately 40 t i m e s  g r e a t e r  f o r  3 28 cm waves and 10 t i m e s  g r ea t e r  

f o r  1.18 c m  waves) 

7 
silicates tend t o  decrease t he  pene t r a t i on  depth s i g n i f i c a n t l y  

Small amounts of m e t a l l i c  ( i ron)  p a r t i c l e s  present  i n  t he  d i e l e c t r i c  

1 2 1  
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B. THERMAL CONDUCTIVITY 

1 The e f f e c t i v e  thermal conduc t iv i t i e s  of t y p i c a l  evacuated qua r t z ,  

pumice, b a s a l t ,  and g l a s s  powders of p a r t i c l e  s i z e  5-75p vary from about 

4 x 

t o  400'K. 

w/cmaC t o  near 40 x w/cm°C over t h e  temperature range 150 

2 .  The e f f e c t i v e  conduct iv i ty  of t h e  evacuated powders s tud ied  is 

w e l l  represented by t h e  sum of t he  constant  t e r m  and a term which has  a 

cubic temperature dependence 

3 .  I n  t he  temperature range of 150 t o  400°K, t h e  r a t i o  of t h e  radia-  

t i o n  t o  s o l i d  conduction contr ibut ions  t o  e f f e c t i v e  thermal conduct iv i ty  

va r i e s  from less than 0.1 t o  more than 5, depending upon the  p a r t i c u l a r  

powder s i z e  and composition 

4.  I n  t he  powders w e  examined, t h e  s o l i d  conduccion contr ibut ion  t o  

e f f e c t i v e  thermal conduct iv i ty  decreases with increas ing p a r t i c l e  s i z e ,  

and t h e  r a d i a t i o n  contr ibut ion  increases  wi th  increas ing p a r t i c l e  s i z e ,  

5 The r a d i a t i o n  con t r ibu t ion  t o  e f f e c t i v e  thermal conductivity can 

b e  predic ted  adequately on t h e  b a s i s  of ava i l ab l e  co r r e l a t i ons  which take  

i n t o  account t h e  r e f r a c t i v e  index and i ts  v a r i a t i o n  with wavelength. 

6 The s o l i d  conduction con t r ibu t ion  t o  thermal conduct iv i ty  cannot 

be predic ted  adequately using co r r e l a t i ons  which consider  only Her tz ian  

contac t  areas and t h e  thermal conduct iv i ty  of t h e  so l id .  

7.  There is no d i r e c t  c o r r e l a t i o n  between thermal conductivity o f  

p a r t i c u l a t e ,  ve s i cu l a r ,  and s o l i d  s i l i c a t e s  and dens i ty .  

of the  material seems t o  inf luence  thermal conductivity more than dens i ty  

The s t r u c t u r e  

8. I n  analyzing luna r  i n f r a r e d  temperature da t a ,  t h e  thermal parameter 

should no t  be t r ea t ed  as independent of temperature. 

procedure is  t o  include the v a r i a t i o n  of both s p e c i f i c  heat  and dens i ty  

wi th  temperature. 

A more des i r ab l e  
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V I .  RECOMMENDATIONS 

To gain  more in s igh t  i n t o  t h e  mechanism of heat  t r a n s f e r  i n  par t icu-  

l a t e  and porous materials under condi t ions  such as e x i s t  i n  t he  lunar  and 

o the r  p lanetary  environments, w e  recommend t h a t  s t u d i e s  be  continued t o  

e s t a b l i s h  t h e  following i n  more d e t a i l :  (1) t he  conduction and r a d i a t i o n  

contr ibut ions  t o  e f f e c t i v e  thermal conduct iv i ty  as a funct ion  of p a r t i c l e  

o r  c e l l  s i z e  and temperature, (2) t h e  absorpt ion  and s c a t t e r i n g  mechanisms 

f o r  r a d i a t i o n  a t t enua t ion  a s  a funct ion  of p a r t i c l e  o r  cell s i z e ,  (3) t h e  

e f f e c t s  of adsorbed gases on t h e  conduction con t r ibu t ion  t o  heat  t r a n s f e r  

The r e s u l t s  of t h e  first two s t u d i e s  w i l l  be of fundamental importance 

i n  determining t h e  thermal behavior of powders and ves i cu l a r  materials 

t h a t  may be  present  i n  t h e  l una r  environment The t h i r d  study is a l s o  

of importance i n  determining t h e  behavior of powders o r  ves i cu l a r  materials 

i n  t he  terrestrial and Martian environments. 

To carry  ou t  t hese  s t u d i e s  four  types of experimental measurements 

o r  ca l cu l a t ions  must be  made: (1) measurement, using the  modified l i n e  

hea t  source method, of t h e  thermal conductivity of a s p e c i f i c  ma te r i a l  

i n  t he  s o l i d  form as a funct ion  of temperature over an extended range; 

(2) measurement of t he  e f f e c t i v e  thermal conduct iv i ty  of t h e  p a r t i c u l a t e  

and ves i cu l a r  form of t h i s  ma te r i a l  a s  a funct ion  of temperature (70 t o  

450°K), p a r t i c l e  s i z e  ( l - l O O u ) ,  and adsorbed gases ( e , g  , water, n i t rogen,  

and carbon dioxide) ;  (3)  ca l cu la t ion  of t h e  e f f e c t i v e  r a d i a t i o n  conduc- 

t i v i t y  of t hese  forms of t h e  same ma te r i a l ,  making allowance f o r  both 

absorpt ion  and s c a t t e r i n g ;  and ( 4 )  acous t i c  measurements, such as com- 

press ion wave ve loc i ty ,  a t t enua t ion ,  and bulk modulus To obta in  t he  most 

complete information and t o  e s t a b l i s h  most accu ra t e ly  t he  r e l a t i v e  import- 

ance of t h e  heat  t r a n s f e r  mechanisms, w e  recommend r e s t r i c t i n g  a t t e n t i o n  

t o  var ious  physica l  forms of a s i n g l e  material t h a t  has  a well- characterized 

composition. 

Because of t h e  importance of d i e l e c t r i c  parameters f o r  t h e  in terpre-  

t a t i o n  of radio-astronomical and radar  observations of l una r  and planetary  

su r f ace  p rope r t i e s ,  w e  recommend t h a t  t h e  measurements be  extended both t o  
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shorter and longer wavelengths than those used in  th is  work. We recom- 

mend using those materials considered for thermal property measurements 

Also, the e f f e c t s  of adsorbed gases,  primarily water and carbon dioxide, 

on the d i e l e c t r i c  constant and loss  tangent should b e  evaluated. 
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